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Motivation

The climatic change is one of the main causes of water-related extreme events.

Figure: Landslide in Wenchuan area of China (left) and bridge failed during Washington floods (right)

In recent years, Material Point Method (MPM) receive attention in geotechnical
engineering.
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Goal of the work

The development of a stabilized formulation for incompressible materials in theMPM
framework. In particular:

1 Incompressible solid mechanics in mixed formulation for simulating large
deformation regimes and

2 Newtonian law for a linearized displacement-based formulation.

All implementations are performed using KRATOS Multiphysics, an open source
and high performance simulation software.

4/ 30



Introduction

The Material
Point Method

Mixed
formulation
for
incompressible
materials

Stabilization
based on
subgrid-scales

Numerical
results

Conclusions

1 Introduction

2 The Material Point Method

3 Mixed formulation for incompressible materials

4 Stabilization based on subgrid-scales

5 Numerical results

6 Conclusions

5/ 30



Introduction

The Material
Point Method

Mixed
formulation
for
incompressible
materials

Stabilization
based on
subgrid-scales

Numerical
results

Conclusions

Why using the Material Point Method (MPM)?

FEM

✗ Large deformations regimes.

Discrete approaches

✗ Large scale problems.

✗ Complex material laws.

The Material Point Method

✓ Large deformation problems

✓ Free surface evolution

✓ Mass conservation.

✓ Complex material laws.

MPM is a particle-in-cell (PIC) method which takes advantage of all the potential
and the well-established knowledge reached in FE technology.
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The Material Point Method

1 A background grid (fixed) used for the FEM solution system.

2 A collection of Material Points (MP) (Lagrangian).

Stage 1. Initialization Stage 2. Calculation Stage 3. Convection
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Stage 1. Initialization phase

Definition of the initial conditions on the FE grid’s nodes.

1 Extrapolation on the nodes.

2 Prediction of nodal displacement,
velocity and acceleration.
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Stage 2. Calculation phase

Update Lagrangian-FEM solution on the nodes of the background grid.

Ω: Initial configuration.
φ(Ω): Current configuration.

The FE traditional steps:

1 Construction of the elemental
system. System is evaluated in the
current configuration.

2 Assembling of the elemental system.

3 Solving the system.
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Stage 3. Convective phase

Information is interpolated and stored on the particles which are moved on
the calculated positions.

1 Nodal information is interpolated back onto the material points.

2 MP position is updated.

3 The undeformed FE grid is recovered.

4 The material points connectivities are updated.
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Mixed formulation u-p for hyperelastic materials

A standard Galerkin displacement-based formulation fails when Poisson’s ratio ν −→ 0.5
(κ −→ ∞) or when the plastic flow is constrained by the volume conservation condition.

Updated Lagrangian Formulation

ρ
∂2u
∂t2

−∇ · σ = ρb in φ (Ω) (t),

p

κ
−
(
1− 1

J

)
= 0 in φ (Ω) (t),

u = ū on φ (∂ΩD) (t),

σ · n = t̄ on φ (∂ΩN) (t),

σ = σdev + pI

Cauchy stress tensor

Hyperelasticity

S = 2
∂Ψ(C)

∂C
−→ σ =

1

J
FSFT.

S := 2
∂Ψdev

∂C
+

dΨvol

dJ
JC−1

• Deviatoric model: Neo-Hookean

• Volumetric model: Miehe et al.

∂Ψvol(J)

∂J
= κ

(
1− 1

J

)
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Mixed formulation for an incompressible Newtonian fluid material

It is a displacement-based formulation, an it is assumed finite strains.

Updated Lagrangian Formulation

ρ
∂2u
∂t2

−∇ · σ = ρb in φ (Ω) (t),

1− 1

J
= 0 in φ (Ω) (t),

u = ū on φ (∂ΩD) (t),

σ · n = t̄ on φ (∂ΩN) (t),

σ = 2µ∇sv︸ ︷︷ ︸
σdev(u)

+pI

Cauchy stress tensor

Incompressible Newtonian fluid
material

σ =
1

J
FSFT

S := J
(
µC−1ĊC−1

)
+ pJC−1

where

Ċ =
DC

Dt
= 2FT∇SvF; C = FTF
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Variational form
The weak form problem consists in finding U = [u, p] :]0,T [−→ W , such that the initial
conditions are satisfied and for all V = [w , q] ∈ W0,

(Dt (U) ,V ) + B (U ,V ) = F (V )

where:
(Dt (U) ,V ) =

(
ρ
∂2u
∂t2

,w
)

B (U ,V ) =
(
σdev(u),∇sw

)
+ (pI,∇sw) +

(p
κ
, q

)
−

(
1− 1

J
, q

)
F (V ) = ⟨ρb,w⟩+ ⟨t̄,w⟩φ(∂ΩN)

Linearization

• Newton-Raphson’s iterative procedure. B must allow to compute a correction δU = [δu, δp].
U = δU + U∗.

(Dt (δU),V ) + Bd (δU ,V ) = F (V )− (Dt (U∗) ,V )− B (U∗,V )
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Spatial and temporal discretizations

Spatial discretization of the linearized form.

Galerkin finite element approximation. It consists in finding δUh ∈ Wh,0 such that:

(Dt (δUh) ,V h)︸ ︷︷ ︸
Temporal terms

+Bd (δUh,V h)︸ ︷︷ ︸
bilinear form

= F (V h)− (Dt (U∗
h) ,V h)− B (U∗

h,V h)

for all V h ∈ Wh,0. To discretise the continuum body B by a set of np material points and
Ωp a finite volume of the body to each of those material points.

B ≈ Bh =

np⋃
p=1

Ωp.

Time discretization

Monolithic time discretization using a Newmark scheme.
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Stabilization technique: Variational Multi-Scale (VMS) Methods
• Objective: to approximate the components of the continuous problem
solution that cannot be resolved by the finite element mesh.

• Unknown splitting: δU = δUh︸︷︷︸
∈Wh,0

+ Ũ︸︷︷︸
∈W̃

and W = Wh,0
⊕

W̃ .

Galerkin terms︷ ︸︸ ︷
(Dt (δUh) ,V h) + Bd (δUh,V h) +

Stabilization terms︷ ︸︸ ︷
�������
⟨Dt(Ũ),V h⟩+

∑
K

⟨Ũ ,

adjoint operator of Ld︷ ︸︸ ︷
L∗
d(uh;V h) ⟩K

= F (V h)− B (U∗
h,V h)− (Dt (U∗

h) ,V h)︸ ︷︷ ︸
Galerkin terms

�
�
�∂Ũ

∂t
+ τ−1Ũ = P̃ [F− L (U∗

h)−Dt (U∗
h)−Dt (δUh)− Ld (δUh)]︸ ︷︷ ︸

Residual from the linearization

Sub-grid scale

17/ 30



Introduction

The Material
Point Method

Mixed
formulation
for
incompressible
materials

Stabilization
based on
subgrid-scales

Numerical
results

Conclusions

Final expression for linear elements

Galerkin terms︷ ︸︸ ︷
(Dt (δUh) ,V h) + Bd (δUh,V h) +

Stabilization terms︷ ︸︸ ︷
S1 (U∗

h ; δUh,V h) + S2 (U∗
h ; δUh,V h)

=F (V h)− B (U∗
h ,V h)− (Dt (U∗

h) ,V h)︸ ︷︷ ︸
Galerkin terms

+R1 (U∗
h ,V h) + R2 (U∗

h ,V h)︸ ︷︷ ︸
Stabilization terms

S1 (U∗
h ; δUh,V h) =∑

K

τ1

〈
P̃

[
−ρ

∂2δuh

∂t2
+ (∇δuh · ∇p∗

h ) + (∇ · p∗
h (I⊗ I− 2I) : ∇sδuh) +∇δph

]
,

− (∇w h · ∇p∗
h )− (∇sw h : ∇ · p∗

h (I⊗ I− 2I))− f(J(u∗
h))∇qh⟩K

S2 (U∗
h ; δUh,V h) =

∑
K

τ2

〈
P̃

[
−δph

κ
+ f(J(u∗

h))∇ · δuh

]
,∇ · w h +

qh
κ

〉
K

• P̃ is the L2 − projection onto the space of sub-grid scales,

• τ is a matrix computed within each element
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Cook’s membrane. Main features.

Temporal discretization: δt = 0.0025 s
Spatial discretization: h = 0.6, 0.3, 0.15, 0.75, 0.325 m with 16 material points per element.
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Cook’s membrane: static and dynamic cases.

Pressure using stabilization VS without stabilization.

• Pressure distribution without jumps
between elements.

• Dynamic case is impossible to run without
stabilization.

Mesh convergence. Static case.

Evolution of the displacement in time. Dynamic case.
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Twisting column problem. Main features

v 0(x , y , z) = 105 sin
(
πz
12

)
(y ,−x , 0)T m/s

Temporal discretization: δt = 0.001 s, Tfin = 0.5 s,
Spatial discretization: mesh size h = 0.2 m, and 16 material points per element in the body.
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Twisting column problem

Twisting column at t = 0.05 s, t = 0.1 s and t = 0.2 s.

• Simulation is done
without remeshing
techniques, ALE or
level set.

Conclusion
ASGS stabilization method is more robust than other methods, such as Polynomial Pressure
Method (PPP).
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Dam break problem. Main features

Spatial discretization: Mesh size h = 0.1 m and h = 0.2 m, and 6 material points per
element.
Temporal discretization: δt = 0.001 s, Tfin = 0.9 s.
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Dam break problem. Results

Dam break test at t=0.25, 0.5 and 0.85 s.

Left: distance of the surge front from axis of plane of symmetry;
Right: height of the residual column.

• Volumetric locking is avoided.

• In agreement with experimental evidence.
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Conclusions

• VMS-type stabilization have been developed and implemented for a solid
mechanics framework and the Material Point Method.

• ASGS stabilization is more robust in comparison with others stabilization
techniques such as the Polynomial Pressure Projection.

• It is able to compute very challenging large deformation regimes.

• Newtonian law for an Updated Lagrangian linearized displacement-based
formulation have been developed. It is checked using an experimental test.
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Linearization

• Newton-Raphson’s iterative procedure.

• Taylor’s series expansion evaluated at the last known equilibrium configuration U∗ = [u∗, p∗].

• B must be allows to compute a correction δU = [δu, δp]. Note that U = δU + U∗.

B (U ,V ) ≈ B (U∗,V ) + Bd (δU ,V ) + o(δu) + o(δp)

Find the correction δU = [δu, δp] :]0,T [−→ W0 such that

(Dt (δU),V ) + Bd (δU ,V ) = F (V )− (Dt (U∗) ,V )− B (U∗,V )

Dt (δU) =

[
ρ
∂2δu
∂t2

, 0

]
Bd (δU ,V ) = (∇δu · (σ(u∗) + p∗I),∇w)

+
(
∇sw , cdev(u∗) + p∗ (I⊗ I− 2I) : ∇sδu

)
+ (δp,∇ · w) +

(
δp

κ
, q

)
− (f(J(u∗))∇ · δu, q)
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Bending beam problem. Main features

v 0(x , y , z) =
5

3
(z , 0, 0)T m/s

Temporal discretization: δt = 0.01 s, Tfin = 3 s,
Spatial discretization: mesh size h = 0.2 m, and 16 material points per element in the body.
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Bending beam problem. Results

Bending column at t = 0.5 s, t = 1 s and t = 1.25 s. Evolution of x-displacement in time of the point A.
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