

CMN 2022, Las Palmas de Gran Canaria

A VMS-stabilized mixed formulation for non-linear incompressible solid mechanics problems using the implicit Material Point Method

Laura Moreno, Alessandro Contri and Antonia Larese

September, 2022

Outline

The Material [Point Method](#page-4-0)

Mixed formulation for materials

based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

[Conclusions](#page-26-0)

1 [Introduction](#page-2-0)

2 [The Material Point Method](#page-4-0)

³ [Mixed formulation for incompressible materials](#page-10-0)

4 [Stabilization based on subgrid-scales](#page-14-0)

5 [Numerical results](#page-18-0)

Motivation

[Introduction](#page-2-0)

The Material [Point Method](#page-4-0)

- **Mixed** formulation for materials
- Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0) results

[Conclusions](#page-26-0)

The climatic change is one of the main causes of water-related extreme events.

Figure: Landslide in Wenchuan area of China (left) and bridge failed during Washington floods (right)

In recent years, Material Point Method (MPM) receive attention in geotechnical engineering.

Goal of the work

[Introduction](#page-2-0)

The Material [Point Method](#page-4-0)

Mixed formulation for materials

based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

The development of a stabilized formulation for incompressible materials in the MPM framework. In particular:

- **1** Incompressible solid mechanics in mixed formulation for simulating large deformation regimes and
- **2** Newtonian law for a linearized displacement-based formulation.

All implementations are performed using **KRATOS Multiphysics**, an open source and high performance simulation software.

- Mixed formulation for [incompressible](#page-10-0) materials
- Stabilization based on [subgrid-scales](#page-14-0)
- [Numerical](#page-18-0) results
- **[Conclusions](#page-26-0)**

1 [Introduction](#page-2-0)

2 [The Material Point Method](#page-4-0)

- 3 [Mixed formulation for incompressible materials](#page-10-0)
- 4 [Stabilization based on subgrid-scales](#page-14-0)
- **6** [Numerical results](#page-18-0)
- **6** [Conclusions](#page-26-0)

- Mixed formulation for materials
- Stabilization [subgrid-scales](#page-14-0)
- [Numerical](#page-18-0)
-

Why using the Material Point Method (MPM)?

FEM

✗ Large deformations regimes.

Discrete approaches

- ✗ Large scale problems.
- ✗ Complex material laws.

The Material Point Method

- ✓ Large deformation problems
- ✓ Free surface evolution
- Mass conservation.
- Complex material laws.

MPM is a particle-in-cell (PIC) method which takes advantage of all the potential and the well-established knowledge reached in FE technology.

The Material [Point Method](#page-4-0)

- Mixed formulation for materials
- Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

- 1 A background grid (fixed) used for the FEM solution system.
- 2 A collection of Material Points (MP) (Lagrangian).

Mixed formulation for materials

based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

[Conclusions](#page-26-0)

Stage 1. Initialization phase

Definition of the initial conditions on the FE grid's nodes.

- **1** Extrapolation on the nodes.
- **2** Prediction of nodal displacement, velocity and acceleration.

- Mixed formulation for materials
- [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

Stage 2. Calculation phase

Update Lagrangian-FEM solution on the nodes of the background grid.

Ω: Initial configuration. $\varphi(\Omega)$: Current configuration. The FE traditional steps:

- **1** Construction of the elemental system. System is evaluated in the
	- current configuration.
- 2 Assembling of the elemental system.
- **3** Solving the system.

Stage 3. Convective phase

Information is interpolated and stored on the particles which are moved on the calculated positions.

- **1** Nodal information is interpolated back onto the material points.
- **2** MP position is updated.

The Material [Point Method](#page-4-0) Mixed formulation for materials

based on [subgrid-scales](#page-14-0) [Numerical](#page-18-0)

- ³ The undeformed FE grid is recovered.
- The material points connectivities are updated. $10/30$

Mixed formulation for [incompressible](#page-10-0) materials

[Newtonian fluid](#page-12-0)

based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

[Conclusions](#page-26-0)

[Introduction](#page-2-0)

2 [The Material Point Method](#page-4-0)

3 [Mixed formulation for incompressible materials](#page-10-0) [Hyperelastic material](#page-11-0) [Newtonian fluid](#page-12-0)

4 [Stabilization based on subgrid-scales](#page-14-0)

6 [Numerical results](#page-18-0)

Mixed formulation u-p for hyperelastic materials

The Material [Point Method](#page-4-0)

Mixed formulation for materials

[Hyperelastic material](#page-11-0) [Newtonian fluid](#page-12-0)

[subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

A standard Galerkin displacement-based formulation fails when Poisson's ratio $\nu \longrightarrow 0.5$ $(\kappa \longrightarrow \infty)$ or when the plastic flow is constrained by the volume conservation condition.

Updated Lagrangian Formulation

$$
\begin{cases}\n\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} - \nabla \cdot \boldsymbol{\sigma} = \rho \mathbf{b} & \text{in } \varphi(\Omega)(t), \\
\frac{\rho}{\kappa} - \left(1 - \frac{1}{J}\right) = 0 & \text{in } \varphi(\Omega)(t), \\
\mathbf{u} = \bar{\mathbf{u}} & \text{on } \varphi(\partial \Omega_{\text{D}})(t), \\
\boldsymbol{\sigma} \cdot \mathbf{n} = \bar{\mathbf{t}} & \text{on } \varphi(\partial \Omega_{\text{N}})(t)\n\end{cases}
$$

$$
\begin{aligned}\n\boldsymbol{u} &= \bar{\boldsymbol{u}} \qquad \text{on } \varphi\left(\partial \Omega_{\text{D}}\right)(t), \\
\boldsymbol{\sigma} \cdot \boldsymbol{n} &= \bar{\boldsymbol{t}} \qquad \text{on } \varphi\left(\partial \Omega_{\text{N}}\right)(t),\n\end{aligned}
$$

$$
\sigma = \sigma^{\text{dev}} + \rho \mathbf{I}
$$

Cauchy stress tensor

Hyperelasticity

$$
\mathbf{S} = 2 \frac{\partial \Psi(\mathbf{C})}{\partial \mathbf{C}} \longrightarrow \sigma = \frac{1}{J} \mathbf{FSF}^{\mathrm{T}}.
$$

$$
\boxed{\textbf{S} := 2\frac{\partial \Psi_{\rm dev}}{\partial \textbf{C}} + \frac{d \Psi_{\rm vol}}{dJ}J\textbf{C}^{-1}}
$$

- Deviatoric model: Neo-Hookean
- Volumetric model: Miehe et al.

$$
\frac{\partial \Psi_{\text{vol}}(J)}{\partial J} = \kappa \left(1 - \frac{1}{J}\right)
$$

Mixed formulation for materials

 $\sqrt{ }$

ρ ∂

 $\begin{matrix} \end{matrix}$

 $\begin{array}{c} \end{array}$

[Newtonian fluid](#page-12-0)

[subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

Mixed formulation for an incompressible Newtonian fluid material

It is a displacement-based formulation, an it is assumed finite strains.

Updated Lagrangian Formulation

$$
\frac{\partial^2 \mathbf{u}}{\partial t^2} - \nabla \cdot \mathbf{\sigma} = \rho \mathbf{b} \quad \text{ in } \varphi(\Omega)(t),
$$

$$
1 - \frac{1}{J} = 0 \quad \text{ in } \varphi(\Omega)(t),
$$

$$
\mathbf{u} = \mathbf{\bar{u}} \quad \text{ on } \varphi(\partial \Omega_{\text{D}})(t),
$$

$$
\mathbf{\sigma} \cdot \mathbf{n} = \mathbf{\bar{t}} \quad \text{ on } \varphi(\partial \Omega_{\text{N}})(t),
$$

Incompressible Newtonian fluid material

$$
\boldsymbol{\sigma} = \frac{1}{J} \boldsymbol{\mathsf{FSF}}^{\mathrm{T}}
$$

$$
S := J\left(\mu \mathbf{C}^{-1} \dot{\mathbf{C}} \mathbf{C}^{-1}\right) + \rho J \mathbf{C}^{-1}
$$

where

$$
\dot{\mathbf{C}} = \frac{D\mathbf{C}}{Dt} = 2\mathbf{F}^T \nabla^S \mathbf{v} \mathbf{F}; \ \mathbf{C} = \mathbf{F}^T \mathbf{F}
$$

Cauchy stress tensor

 $\sigma = 2\mu \nabla^s \mathbf{v} + p\mathbf{I}$ $\widetilde{\sigma^{\text{dev}}(u)}$ $\boldsymbol{\sigma}^{\text{dev}}(\boldsymbol{u})$

Variational form

The weak form problem consists in finding $U = [u, p] :]0, T[\rightarrow W]$, such that the initial conditions are satisfied and for all $V = [w, q] \in W_0$,

$$
(\mathcal{D}_t(\boldsymbol{U}),\boldsymbol{V})+\mathcal{B}(\boldsymbol{U},\boldsymbol{V})=\mathcal{F}(\boldsymbol{V})
$$

where:

materials

The Material [Point Method](#page-4-0) Mixed formulation for

[Newtonian fluid](#page-12-0)

based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

$$
(\mathcal{D}_{t}(\boldsymbol{U}), \boldsymbol{V}) = \left(\rho \frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}, \boldsymbol{w}\right)
$$

$$
B(\boldsymbol{U}, \boldsymbol{V}) = (\sigma^{\text{dev}}(\boldsymbol{u}), \nabla^{s} \boldsymbol{w}) + (\rho \mathbf{I}, \nabla^{s} \boldsymbol{w}) + \left(\frac{\rho}{\kappa}, q\right) - \left(1 - \frac{1}{J}, q\right)
$$

$$
\mathcal{F}(\boldsymbol{V}) = \langle \rho \boldsymbol{b}, \boldsymbol{w} \rangle + \langle \boldsymbol{\bar{t}}, \boldsymbol{w} \rangle_{\varphi(\partial \Omega_{N})}
$$

Linearization

• Newton-Raphson's iterative procedure. B must allow to compute a correction $\delta \mathbf{U} = [\delta \mathbf{u}, \delta \mathbf{p}]$. $\boldsymbol{U} = \delta \boldsymbol{U} + \boldsymbol{U}^*.$

$$
\left(\mathcal{D}_{t}\left(\delta\textit{\textbf{U}}\right),\textit{\textbf{V}}\right)+\mathcal{B}_{d}\left(\delta\textit{\textbf{U}},\textit{\textbf{V}}\right)=\mathcal{F}\left(\textit{\textbf{V}}\right)-\left(\mathcal{D}_{t}\left(\textit{\textbf{U}}^{*}\right),\textit{\textbf{V}}\right)-\mathcal{B}\left(\textit{\textbf{U}}^{*},\textit{\textbf{V}}\right)
$$

Mixed formulation for [incompressible](#page-10-0) materials

Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0) results

[Conclusions](#page-26-0)

1 [Introduction](#page-2-0)

2 [The Material Point Method](#page-4-0)

3 [Mixed formulation for incompressible materials](#page-10-0)

4 [Stabilization based on subgrid-scales](#page-14-0)

6 [Numerical results](#page-18-0)

Mixed formulation for materials

Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

Spatial and temporal discretizations

Spatial discretization of the linearized form.

Galerkin finite element approximation. It consists in finding $\delta U_h \in \mathcal{W}_{h,0}$ such that:

$$
\underbrace{\left(\mathcal{D}_{t}\left(\delta\bm{U}_{h}\right),\bm{V}_{h}\right)}_{\text{Temporal terms}}+\underbrace{\mathcal{B}_{\text{d}}\left(\delta\bm{U}_{h},\bm{V}_{h}\right)}_{\text{bilinear form}}=\mathcal{F}\left(\bm{V}_{h}\right)-\left(\mathcal{D}_{t}\left(\bm{U}_{h}^{*}\right),\bm{V}_{h}\right)-\mathcal{B}\left(\bm{U}_{h}^{*},\bm{V}_{h}\right)
$$

for all $V_h \in W_{h,0}$. To discretise the continuum body B by a set of n_p material points and Ω_p a finite volume of the body to each of those material points.

$$
\mathcal{B} \approx \mathcal{B}_h = \bigcup_{p=1}^{n_p} \Omega_p.
$$

Time discretization

Monolithic time discretization using a Newmark scheme.

Stabilization technique: Variational Multi-Scale (VMS) Methods

• Objective: to approximate the components of the continuous problem solution that cannot be resolved by the finite element mesh.

The Material [Point Method](#page-4-0) Mixed formulation for materials Stabilization based on [subgrid-scales](#page-14-0) [Numerical](#page-18-0)

 \bullet Unknown splitting: $\delta \bm{U} = \ \delta \bm{U}_h + \tilde{\bm{U}}$ and $\bm{\mathcal{W}} = \bm{\mathcal{W}}_{\bm{h},\bm{0}} \bigoplus \tilde{\bm{\mathcal{W}}}$. $\in \hspace{-1.2ex}\rule{0.0pt}{1.1ex}\hspace{0.1ex}\hspace{0.1ex} \widetilde{\mathcal{W}}_{h,0}$ $\widetilde{\in} \widetilde{\mathcal{W}}$ Galerkin terms ${\overbrace {({\cal D}_t\left(\delta{\bm{U}_h})\,,{\bm{V}_h}\right)}+B_{\sf d}\left(\delta{\bm{U}_h},{\bm{V}_h}\right)}+{\underline{{\cal D}_t}(\tilde{\bm{\omega}}),\widetilde{{\bm{V}_h}}}}+{\sum \langle \tilde{\bm{U}},\widetilde{\bm{U}}\rangle}.$ Stabilization terms $\overline{}$ adjoint operator of \mathcal{L}_{d} K $\widetilde{\mathcal{L}_{\text{d}}^*(\boldsymbol{u}_h;\boldsymbol{V}_h)} \rightarrow_{\boldsymbol{\mathcal{K}}}$ $=\mathcal{F}\left(\boldsymbol{V}_{h}\right)-B\left(\boldsymbol{U}_{h}^{*},\boldsymbol{V}_{h}\right)-\left(\mathcal{D}_{t}\left(\boldsymbol{U}_{h}^{*}\right),\boldsymbol{V}_{h}\right)$ **Galerkin terms**

$$
\frac{\partial \widetilde{U}}{\partial t} + \tau^{-1} \widetilde{U} = \widetilde{P} \underbrace{\left[\mathfrak{F} - \mathcal{L} \left(\boldsymbol{U}_h^* \right) - \mathcal{D}_t \left(\boldsymbol{U}_h^* \right) - \mathcal{D}_t \left(\delta \boldsymbol{U}_h \right) - \mathcal{L}_d \left(\delta \boldsymbol{U}_h \right) \right]}_{\text{Residual from the linearization}}
$$

Final expression for linear elements

$$
S_{1} (U_{h}^{*}; \delta U_{h}, V_{h}) =
$$
\n
$$
\sum_{K} \tau_{1} \left\langle \tilde{P} \left[-\rho \frac{\partial^{2} \delta u_{h}}{\partial t^{2}} + (\nabla \delta u_{h} \cdot \nabla p_{h}^{*}) + (\nabla \cdot p_{h}^{*} (I \otimes I - 2\mathbb{I}) : \nabla^{s} \delta u_{h}) + \nabla \delta p_{h} \right],
$$
\n
$$
- (\nabla w_{h} \cdot \nabla p_{h}^{*}) - (\nabla^{s} w_{h} : \nabla \cdot p_{h}^{*} (I \otimes I - 2\mathbb{I})) - f(J(u_{h}^{*})) \nabla q_{h} \right\rangle_{K}
$$
\n
$$
S_{2} (U_{h}^{*}; \delta U_{h}, V_{h}) = \sum_{K} \tau_{2} \left\langle \tilde{P} \left[-\frac{\delta p_{h}}{\kappa} + f(J(u_{h}^{*})) \nabla \cdot \delta u_{h} \right], \nabla \cdot w_{h} + \frac{q_{h}}{\kappa} \right\rangle_{K}
$$

- \tilde{P} is the L^2 projection onto the space of sub-grid scales,
- τ is a matrix computed within each element

The Material [Point Method](#page-4-0) Mixed formulation for materials Stabilization based on [subgrid-scales](#page-14-0) [Numerical](#page-18-0)

Mixed formulation for [incompressible](#page-10-0) materials

Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0) [Hyperelastic material](#page-18-0) [Newtonian fluid](#page-23-0)

[Conclusions](#page-26-0)

[Introduction](#page-2-0)

2 [The Material Point Method](#page-4-0)

3 [Mixed formulation for incompressible materials](#page-10-0)

4 [Stabilization based on subgrid-scales](#page-14-0)

5 [Numerical results](#page-18-0) [Hyperelastic material](#page-18-0) [Newtonian fluid](#page-23-0)

Cook's membrane. Main features.

Point A

 \overline{t}

Temporal discretization: $\delta t = 0.0025$ s

Spatial discretization: $h = 0.6, 0.3, 0.15, 0.75, 0.325$ m with 16 material points per element.

Cook's membrane: static and dynamic cases.

The Material [Point Method](#page-4-0)

Mixed formulation for [incompressible](#page-10-0) materials

Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0) [Hyperelastic material](#page-18-0) [Newtonian fluid](#page-23-0)

Pressure using stabilization VS without stabilization.

- Pressure distribution without jumps between elements.
- Dynamic case is impossible to run without stabilization.

Evolution of the displacement in time. Dynamic case.

The Material [Point Method](#page-4-0) Mixed formulation for materials Stabilization

based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0) [Hyperelastic material](#page-18-0) [Newtonian fluid](#page-23-0) **[Conclusions](#page-26-0)**

Twisting column problem. Main features

 $v^0(x, y, z) = 105 \sin \left(\frac{\pi z}{12} \right) (y, -x, 0)^T$ m/s

Temporal discretization: $\delta t = 0.001$ s, $T_{fin} = 0.5$ s, **Spatial discretization**: mesh size $h = 0.2$ m, and 16 material points per element in the body.

Twisting column problem

Twisting column at $t = 0.05$ s, $t = 0.1$ s and $t = 0.2$ s.

Conclusion

The Material [Point Method](#page-4-0) Mixed formulation for materials Stabilization based on [subgrid-scales](#page-14-0) [Numerical](#page-18-0) [Hyperelastic material](#page-18-0) [Newtonian fluid](#page-23-0) **[Conclusions](#page-26-0)**

> ASGS stabilization method is more robust than other methods, such as Polynomial Pressure Method (PPP).

Mixed formulation for [incompressible](#page-10-0) materials

Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0) [Newtonian fluid](#page-23-0)

[Conclusions](#page-26-0)

[Introduction](#page-2-0)

2 [The Material Point Method](#page-4-0)

3 [Mixed formulation for incompressible materials](#page-10-0)

4 [Stabilization based on subgrid-scales](#page-14-0)

5 [Numerical results](#page-18-0) [Hyperelastic material](#page-18-0)

[Newtonian fluid](#page-23-0)

Dam break problem. Main features

Spatial discretization: Mesh size $h = 0.1$ m and $h = 0.2$ m, and 6 material points per element.

Temporal discretization: $\delta t = 0.001$ s, $T_{fin} = 0.9$ s.

Dam break problem. Results

Mixed

for

Dam break test at $t=0.25$, 0.5 and 0.85 s.

Left: distance of the surge front from axis of plane of symmetry; Right: height of the residual column.

- Volumetric locking is avoided.
- In agreement with experimental evidence.

Mixed formulation for [incompressible](#page-10-0) materials

Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0) results

[Conclusions](#page-26-0)

1 [Introduction](#page-2-0)

2 [The Material Point Method](#page-4-0)

3 [Mixed formulation for incompressible materials](#page-10-0)

4 [Stabilization based on subgrid-scales](#page-14-0)

6 [Numerical results](#page-18-0)

Conclusions

The Material [Point Method](#page-4-0)

- Mixed formulation for materials
- based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

- VMS-type stabilization have been developed and implemented for a solid mechanics framework and the Material Point Method.
- ASGS stabilization is more robust in comparison with others stabilization techniques such as the Polynomial Pressure Projection.
- It is able to compute very challenging large deformation regimes.
- Newtonian law for an Updated Lagrangian linearized displacement-based formulation have been developed. It is checked using an experimental test.

References

1 Iaconeta, I. et al. A stabilized mixed implicit material point method for non-linear incompressible solid mechanics. Computational Mechanics 63.6 (2019): 1243-1260.

- 2 Contri, A. An Updated Lagrangian displacement-based formulation for free surface incompressible fluids using MPM. Master Thesis.
- ³ Castañar I., Baiges J. and Codina R. A stabilized mixed finite element approximation for incompressible finite strain solid dynamics using a total Lagrangian formulation. Computer Methods in Applied Mechanics and Engineering 368 (2020): 113164.
- 4 Hassan, Osama I. et al. An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: Total and Updated Lagrangian formulations. Journal of Computational Physics: X 3 (2019): 100025.
- 5 Cervera, M. et al. Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: Compressible and incompressible plasticity. Computer Methods in Applied Mechanics and Engineering 285 (2015): 752-775.
- 6 Martin J. C., Moyce W. J., Penney W. G., Price A. T. Thornhill C. K. (1952). Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 244(882), 312-324.

The Material [Point Method](#page-4-0)

Mixed formulation for [incompressible](#page-10-0) materials

Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0) results

Mixed formulation for materials

Stabilization based on [subgrid-scales](#page-14-0)

[Numerical](#page-18-0)

[Conclusions](#page-26-0)

UNIVERSITÀ DEGLI STUDI DI PADOVA

September 2022

Thank you for your attention!!

Laura Moreno Martínez

Linearization

- Newton-Raphson's iterative procedure.
- Taylor's series expansion evaluated at the last known equilibrium configuration $\bm{U}^*=[\bm{u}^*,\bm{\rho}^*].$
- $\bullet\;$ B must be allows to compute a correction $\delta\bm{U}=[\delta\bm{u},\delta p].$ Note that $\bm{U}=\delta\bm{U}+\bm{U}^*$.

 $B(\boldsymbol{U},\boldsymbol{V})\approx B(\boldsymbol{U}^*,\boldsymbol{V})+B_{\mathrm{d}}(\delta\boldsymbol{U},\boldsymbol{V})+o(\delta\boldsymbol{u})+o(\delta p)$

Find the correction $\delta \mathbf{U} = [\delta \mathbf{u}, \delta \rho] :]0, T[$ \longrightarrow \mathcal{W}_0 such that

$$
\left(\mathcal{D}_{t}\left(\delta\textit{\textbf{U}}\right),\textit{\textbf{V}}\right)+\mathcal{B}_{d}\left(\delta\textit{\textbf{U}},\textit{\textbf{V}}\right)=\mathcal{F}\left(\textit{\textbf{V}}\right)-\left(\mathcal{D}_{t}\left(\textit{\textbf{U}}^{*}\right),\textit{\textbf{V}}\right)-\mathcal{B}\left(\textit{\textbf{U}}^{*},\textit{\textbf{V}}\right)
$$

$$
\mathcal{D}_t \left(\delta \boldsymbol{U} \right) = \left[\rho \frac{\partial^2 \delta \boldsymbol{u}}{\partial t^2}, 0 \right] \qquad \qquad \mathcal{B}_d \left(\delta \boldsymbol{U}, \boldsymbol{V} \right) = \left(\nabla \delta \boldsymbol{u} \cdot (\boldsymbol{\sigma}(\boldsymbol{u}^*) + \boldsymbol{\rho}^* \boldsymbol{I}), \nabla \boldsymbol{w} \right) \\qquad \qquad + \left(\nabla^s \boldsymbol{w}, \mathfrak{C}^{\text{dev}}(\boldsymbol{u}^*) + \boldsymbol{\rho}^* \left(\boldsymbol{I} \otimes \boldsymbol{I} - 2 \mathbb{I} \right) : \nabla^s \delta \boldsymbol{u} \right) \\qquad \qquad + \left(\delta \boldsymbol{\rho}, \nabla \cdot \boldsymbol{w} \right) + \left(\frac{\delta \boldsymbol{\rho}}{\kappa}, \boldsymbol{q} \right) - \left(\mathsf{f}(\boldsymbol{J}(\boldsymbol{u}^*)) \nabla \cdot \delta \boldsymbol{u}, \boldsymbol{q} \right)
$$

Bending beam problem. Main features

$$
\mathbf{v}^0(x, y, z) = \frac{5}{3}(z, 0, 0)^T \, \mathbf{m/s}
$$

Temporal discretization: $\delta t = 0.01$ s, $T_{\text{fin}} = 3$ s, **Spatial discretization**: mesh size $h = 0.2$ m, and 16 material points per element in the body. 32/ 3

Bending beam problem. Results

Bending column at $t = 0.5$ s, $t = 1$ s and $t = 1.25$ s. Evolution of x-displacement in time of the point A.