

IX International Conference on Coupled Problems in Science and Engineering

Thermal coupling simulations with a viscoelastic fluid flow

Laura Moreno Martínez Advisors: Ramon Codina and Joan Baiges

June, 2021

1 [Introduction](#page-2-0)

- **[Viscoelasticity](#page-2-0)**
- \blacksquare [Heat properties](#page-3-0)

2 [Thermal Coupling](#page-4-0)

- [Computing non-isothermal viscoelastic fluid flows](#page-5-0)
- [Relevant dimensionless numbers](#page-10-0)
- [Coupling with logarithmic formulation](#page-11-0)

3 [Finite Element approach](#page-14-0)

- **[Discretization](#page-15-0)**
- [Stabilization](#page-16-0)
- [Algorithm](#page-17-0)
- [Linearization](#page-18-0)

4 [Numerical Results](#page-18-0)

- \blacksquare [Flow past a cylinder](#page-19-0)
- \blacksquare [1:3 Expansion](#page-23-0)

5 [Conclusions & References](#page-30-0)

- Introduction: Viscoelasticity
	- Viscoelastic fluids are a specific type of **non-Newtonian** fluids that exhibits a combination of elastic and viscous effects.
		- Visco: friction, irreversibility, loss of memory.
		- **Elastic**: recoil, internal energy storage.
	- They have **memory**. The state-of-stress depends on the flow history.

Introduction: Heat properties

Viscoelastic fluids have very advantageous properties for heat transfer and transport.

- As the elasticity of the flow increases, the dynamics of viscoelastic fluid change, turning out in a higher mixing capacity.
- **Transformation of large amounts of mechanical energy into heat; and** consequently in a rising of the temperature material.
- **EXamples:** Extruders, heat exchange, fire brigades water tanks, petroleum extraction, reducing the drag forces in submarines, chemical reactors.

1 [Introduction](#page-2-0)

[Viscoelasticity](#page-2-0)

 \blacksquare [Heat properties](#page-3-0)

2 [Thermal Coupling](#page-4-0)

[Computing non-isothermal viscoelastic fluid flows](#page-5-0)

- [Relevant dimensionless numbers](#page-10-0)
- [Coupling with logarithmic formulation](#page-11-0)

3 [Finite Element approach](#page-14-0)

- **[Discretization](#page-15-0)**
- [Stabilization](#page-16-0)
- [Algorithm](#page-17-0)
- **[Linearization](#page-18-0)**

4 [Numerical Results](#page-18-0)

- **[Flow past a cylinder](#page-19-0)**
- \blacksquare [1:3 Expansion](#page-23-0)

5 [Conclusions & References](#page-30-0)

[Introduction](#page-2-0) [Thermal Coupling](#page-4-0) [Finite Element approach](#page-14-0) [Numerical Results](#page-18-0) [Conclusions & References](#page-30-0) 0000 000000000000

Computing non-isothermal viscoelastic fluid flows

Viscoelastic materials

The stresses depends on:

- **1** Deformation and deformation history.
- 2 Temperature and temperature history.

 \implies Temperature should be considered as an **independent variable** in the constitutive equations for the stress tensor.

 0000

000000000000

[Introduction](#page-2-0) [Thermal Coupling](#page-4-0) [Finite Element approach](#page-14-0) [Numerical Results](#page-18-0) [Conclusions & References](#page-30-0)

Computing non-isothermal viscoelastic fluid flows

Viscoelastic problem

Temperature dependence of the linear viscoelastic properties by

> THE PRINCIPLE OF TIME-TEMPERATURE SUPERPOSITION

If there is free convection flotation forces are considered too.

Temperature problem

In the energy equation now must be considered

- **Mechanical power that is** dissipated.
	- \Longrightarrow Viscous part
- **Mechanical part that is** accumulated as elastic energy.
	- \implies Deformation part

The principle of time-temperature superposition (1)

Viscoelastic fluid flow equations

Momentum equation:

$$
\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} - \nabla \cdot \underbrace{(2\eta_s(\vartheta) \nabla^s \mathbf{u} + \sigma)}_{\text{Delectric number}} + \nabla \rho = \mathbf{f} + \underbrace{\gamma \rho \mathbf{g}(\vartheta_0 - \vartheta)}_{\text{Delectric number}}
$$

Deviatoric extra stress tensor

Only for free convection

Continuity equation:

 $\nabla \cdot \mathbf{u} = 0$

Constitutive equation:

$$
\frac{1}{2\eta_{\rho}(\vartheta)}(1+\mathfrak{h}(\boldsymbol{\sigma}))\cdot\boldsymbol{\sigma}-\nabla^s\boldsymbol{u}+\frac{\lambda(\vartheta)}{2\eta_{\rho}(\vartheta)}\left(\frac{\partial\boldsymbol{\sigma}}{\partial t}+\boldsymbol{u}\cdot\nabla\boldsymbol{\sigma}\overbrace{-\boldsymbol{\sigma}\cdot\nabla\boldsymbol{u}}^{\text{Deformation terms}}+\overbrace{(\nabla\boldsymbol{u}^{\mathsf{T}})\cdot\boldsymbol{\sigma}}^{\text{Deformation terms}}\right)
$$

Laura Moreno Martínez Thermal coupling with viscoelastic flows problems 8/34

 $= 0$

Two different models in literature:

1) Williams-Landel-Ferry

$$
g_{\text{wlf}}(\vartheta) = \exp\left[-\frac{c_{\text{a}}\cdot(\vartheta - \vartheta_0)}{c_{\text{b}} + (\vartheta - \vartheta_0)}\right]
$$

where c_2 and c_b are constants.

2) Arrhenius $g_{\mathsf{a}}(\vartheta) = \mathsf{exp} \left[c_r \left(\frac{1}{\mathsf{a}^2} \right) \right]$ $\frac{1}{\vartheta}-\frac{1}{\vartheta_0}$ ϑ_0 \setminus where c_r is a constant parameter.

Relation between temperature and viscoelastic properties

$$
\lambda(\vartheta) = \lambda(\vartheta_0)g(\vartheta)
$$

$$
\eta_0(\vartheta) = \eta_0(\vartheta_0)g(\vartheta)
$$

Energy equation

The heat source term is thus the classical one.

$$
\rho C_p \left(\frac{\partial \vartheta}{\partial t} + u \cdot \nabla \vartheta \right) - k \Delta \vartheta = \sigma \cdot \nabla^s u
$$

Viscous dissipation represents the internal heat produced by internal work: it means the contribution of the entropy elasticity.

[Introduction](#page-2-0) [Thermal Coupling](#page-4-0) [Finite Element approach](#page-14-0) [Numerical Results](#page-18-0) [Conclusions & References](#page-30-0) Four relevant dimensionless numbers

Reynolds number

\n
$$
_oUL
$$

 $Re = \frac{\rho UL}{r}$ η_0

Inertial forces VS Viscous forces

Weissenberg number

$$
\mathrm{We}=\frac{\lambda U}{L}
$$

Elastic forces VS Viscous forces

Prandtl number

$$
\Pr = \frac{\eta_0 C_p}{k_f}
$$

Momentum VS Thermal diffusivity

Brinkman number

$$
Br = \frac{\eta_0 U^2}{k_f(\vartheta_w - \vartheta_0)}
$$

Inertial power VS Heat Conduction

$$
\frac{1}{2\eta_{p}(\vartheta)}(1+\mathfrak{h}(\boldsymbol{\sigma}))\cdot\boldsymbol{\sigma}-\nabla^{s}\boldsymbol{u}+\frac{\lambda(\vartheta)}{2\eta_{p}(\vartheta)}\left(\frac{\partial\boldsymbol{\sigma}}{\partial t}+\frac{\text{convective term}}{\boldsymbol{u}\cdot\nabla\boldsymbol{\sigma}}\frac{\text{deformation terms}}{-\boldsymbol{\sigma}\cdot\nabla\boldsymbol{u}+(\nabla\boldsymbol{u}^{T})\cdot\boldsymbol{\sigma}}\right)=\boldsymbol{0}
$$

- We is small: Newtonian viscosity fluid.
- If $We > 1$: problems are extremally complicated.

Weissenberg number $We = \frac{\lambda U}{l}$ L

Logarithmic-Conformation Reformulation

$$
\psi = \log(\tau) = \log\left(\frac{\lambda_0 \sigma}{\eta_P} + \mathbf{I}\right) \longrightarrow \sigma = \frac{\eta_P}{\lambda_0} (\exp(\psi) - \mathbf{I})
$$

Change of variable

Momentum equation:

$$
-\nabla \cdot \frac{\eta_{p}(\vartheta)}{\lambda_{0}(\vartheta)} \exp(\psi) - 2\nabla \cdot \eta_{s}(\vartheta)(\nabla^{s} \mathbf{u}) + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mathbf{f}
$$

Continuity equation:

$$
\nabla \cdot \boldsymbol{u} = 0
$$

Constitutive equation:

$$
\frac{1}{2\lambda_0(\vartheta)}(\exp(\psi) - \mathbf{I}) \cdot (\mathfrak{h}(\exp(\psi)) + \mathbf{I}) - \nabla^s \mathbf{u} + \frac{\lambda(\vartheta)}{2\lambda_0(\vartheta)} (\mathbf{u} \cdot \nabla \exp(\psi)) + \frac{\lambda(\vartheta)}{2\lambda_0(\vartheta)} (-\exp(\psi) \cdot \nabla \mathbf{u} - (\nabla \mathbf{u})^T \cdot \exp(\psi) + 2\nabla^s \mathbf{u}) = 0
$$

Energy equation:

$$
\rho C_p \left(\frac{\partial \vartheta}{\partial t} + \boldsymbol{u} \cdot \nabla \vartheta \right) - k \Delta \vartheta = \left(\frac{\eta_p(\vartheta)}{\lambda_0(\vartheta)} \exp(\psi) - \mathbf{I} \right) : \nabla^s \boldsymbol{u}
$$

Laura Moreno Martínez **Thermal coupling with viscoelastic flows problems** 13/34

Finding $U = [u, p, \sigma] \in \mathcal{X} := \mathcal{V} \times \mathcal{Q} \times \mathcal{T}$ such that

$$
\mathcal{G}_{\text{std}}(\vartheta; \boldsymbol{U}, \boldsymbol{V}) + B_{\text{std}}(\boldsymbol{U}; \boldsymbol{U}, \boldsymbol{V}) = \mathcal{L}_{\text{std}}(\boldsymbol{V}),
$$

for all $V \in \mathcal{X}$, where

$$
\mathcal{G}_{\text{std}}(\hat{\vartheta}; \mathbf{U}, \mathbf{V}) = \left(\rho \frac{\partial \mathbf{u}}{\partial t}, \mathbf{v}\right) + \left(\frac{\lambda(\hat{\vartheta})}{2\eta_0(\hat{\vartheta})} \frac{\partial \sigma}{\partial t}, \chi\right) + \rho C_{\rho} \left(\frac{\partial \vartheta}{\partial t}, \xi\right),
$$
\n
$$
\mathcal{B}_{\text{std}}(\hat{\mathbf{U}}; \mathbf{U}, \mathbf{V}) = 2(\eta_s(\hat{\vartheta}) \nabla^s \mathbf{u}, \nabla^s \mathbf{v}) + \langle \rho \hat{\mathbf{u}} \cdot \nabla \mathbf{u}, \mathbf{v} \rangle + (\sigma, \nabla^s \mathbf{v})
$$
\n
$$
-(\rho, \nabla \cdot \mathbf{v}) + (q, \nabla \cdot \mathbf{u}) + \left(\frac{1}{2\eta_{\rho}(\hat{\vartheta})} \left(\mathbf{I} + \mathfrak{h}(\hat{\sigma})\right) \cdot \sigma, \chi\right)
$$
\n
$$
-(\nabla^s \mathbf{u}, \chi) + \left(\frac{\lambda(\hat{\vartheta})}{2\eta_{\rho}(\hat{\vartheta})} \left(\hat{\mathbf{u}} \cdot \nabla \sigma - \sigma \cdot \nabla \hat{\mathbf{u}} - (\nabla \hat{\mathbf{u}})^T \cdot \sigma\right), \chi\right)
$$
\n
$$
+ \rho C_{\rho} (\hat{\mathbf{u}} \cdot \nabla \vartheta, \xi) + (k \nabla \vartheta, \nabla \xi) - (\hat{\sigma} : \nabla^s \hat{\mathbf{u}}, \xi),
$$
\n
$$
L_{\text{std}}(\mathbf{V}) = \langle \mathbf{f}, \mathbf{v} \rangle.
$$

Laura Moreno Martínez **Thermal coupling with viscoelastic flows problems** 14/34

1 [Introduction](#page-2-0)

- **[Viscoelasticity](#page-2-0)**
- \blacksquare [Heat properties](#page-3-0)

2 [Thermal Coupling](#page-4-0)

[Computing non-isothermal viscoelastic fluid flows](#page-5-0)

- [Relevant dimensionless numbers](#page-10-0)
- [Coupling with logarithmic formulation](#page-11-0)

3 [Finite Element approach](#page-14-0)

- **[Discretization](#page-15-0)**
- **[Stabilization](#page-16-0)**
- [Algorithm](#page-17-0)
- **[Linearization](#page-18-0)**

[Numerical Results](#page-18-0)

- **[Flow past a cylinder](#page-19-0)**
- \blacksquare [1:3 Expansion](#page-23-0)

5 [Conclusions & References](#page-30-0)

Spatial discretization

Galerkin finite element approximation. Consists in finding $\boldsymbol{U}_h : (0, T) \longrightarrow \boldsymbol{\mathcal{X}}_h$

$$
\underbrace{\mathcal{G}(\vartheta_h; \boldsymbol{U}_h, \boldsymbol{V}_h)}_{\text{Temporal terms}} + \underbrace{\mathcal{B}(\boldsymbol{U}_h; \boldsymbol{U}_h, \boldsymbol{V}_h)}_{\text{Bilinear form}} = L(\boldsymbol{V}_h),
$$
\nfor all $\boldsymbol{V}_h = [\boldsymbol{v}_h, q_h, \chi_h] \in \boldsymbol{\mathcal{X}}_h$

Time discretization

Monolithic time discretization. BDF1 and BDF2 schemes have been employed in the work to reach a stationary solution.

To approximate the components of the continuous problem solution that cannot be resolved by the finite element mesh.

The algorithm is iterative for coupling but monolithic for the fluid flow problem.

The parameters are continuously updated.

1 [Introduction](#page-2-0)

- **[Viscoelasticity](#page-2-0)**
- \blacksquare [Heat properties](#page-3-0)

2 [Thermal Coupling](#page-4-0)

- **[Computing non-isothermal viscoelastic fluid flows](#page-5-0)**
- [Relevant dimensionless numbers](#page-10-0)
- [Coupling with logarithmic formulation](#page-11-0)

3 [Finite Element approach](#page-14-0)

- **[Discretization](#page-15-0)**
- [Stabilization](#page-16-0)
- [Algorithm](#page-17-0)
- **[Linearization](#page-18-0)**

4 [Numerical Results](#page-18-0)

- \blacksquare [Flow past a cylinder](#page-19-0)
- [1:3 Expansion](#page-23-0)

5 [Conclusions & References](#page-30-0)

The computational domain: $R=0.03$

- The boundary conditions of the problem are:
	- \circ The inflow velocity is $u_x = 1.2$ m/s and $u_y = 0$.
	- Symmetry conditions are prescribed along the axis.
	- For the outflow boundary the velocity is free in both components.
	- Non-slip conditions are set in the wall of the cylinder and on the top wall.
	- \circ Temperature ϑ_0 is imposed at inlet and on the top wall.
- The viscoelastic fluid parameters are: $\rho = 921$ kg · m $^{-3}$, $\beta = 0.5$ and $\eta_0(\vartheta_0)=10^4$, $\lambda(\vartheta_0)=0.1$ s. WLF function.
- The temperature parameters are: $\vartheta_0\text{=}$ 462K, $\mathcal{C}_\rho = 1.5$ kJ $(\mathsf{kg}\cdot\mathsf{K}^{-1})$ and $k_f = 0.17W(m \cdot K^{-1}).$
- Dimensionless numbers: Re=0.0033, We ∈ {0, 1, 2, 3, 4}, Pe=Pr Re >> 1.
- Spatial discretization: Mesh of triangles with 58591 elements and 36174 nodes. m,

Laura Moreno Martínez **Thermal coupling with viscoelastic flows problems** 22/34

Two main conclusions:

- Reduction of stresses when thermal coupling is considered.
- Increment of temperature when the Weissenberg number increase.

Laura Moreno Martínez **Thermal coupling with viscoelastic flows problems** 23/34

The computational domain: h=0.1; H=0.3; L₁=60h; L₃=120h; $\theta = 60^\circ$

- The boundary conditions of the problem are:
	- \circ The inflow velocity is imposed u_x (different for each case) and $u_y = 0$.
	- For the outflow boundary the velocity is free in both components.
	- Non-slip conditions are set on walls.
	- \circ Temperature $\vartheta_0 = 563.5K$ is imposed on walls and as initial condition.
	- \circ Temperature $\vartheta_i = 463.5K$ is imposed on the inlet.
- The viscoelastic fluid parameters are: $\rho = 1226$ kg · m $^{-3}$, $\beta = 0.5$ and $\eta_0(\vartheta_0) = 4.07$, $\lambda(\vartheta_0)$ different for each case. Arrhenius function.
- The temperature parameters are: ϑ_0 =463.5K, C_p and k_f also is specific of each case.
- Dimensionless numbers: Re ∈ [0, 200], We ∈ [0, 3], Pr ∈ [0, 25], Br ∈ [0, 100].
- Spatial discretization: Structured mesh of bilinear elements.

Laura Moreno Martínez **Thermal coupling with viscoelastic flows problems** 24/34

Figure: Streamlines and temperature contours for $Re = 10$ and 30.

Laura Moreno Martínez **Thermal coupling with viscoelastic flows problems** 25/34

Figure: Streamlines and temperature contours for $Re = 50$ and 100.

Laura Moreno Martínez Thermal coupling with viscoelastic flows problems 26/34

Laura Moreno Martínez Thermal coupling with viscoelastic flows problems 27/34

[Introduction](#page-2-0) [Thermal Coupling](#page-4-0) [Finite Element approach](#page-14-0) [Numerical Results](#page-18-0) [Conclusions & References](#page-30-0) 3. Prandtl number study

Laura Moreno Martínez **Thermal coupling with viscoelastic flows problems** 29/34

Laura Moreno Martínez Thermal coupling with viscoelastic flows problems 30/34

1 [Introduction](#page-2-0)

- **[Viscoelasticity](#page-2-0)**
- \blacksquare [Heat properties](#page-3-0)

2 [Thermal Coupling](#page-4-0)

- **[Computing non-isothermal viscoelastic fluid flows](#page-5-0)**
- [Relevant dimensionless numbers](#page-10-0)
- [Coupling with logarithmic formulation](#page-11-0)

3 [Finite Element approach](#page-14-0)

- **[Discretization](#page-15-0)**
- [Stabilization](#page-16-0)
- [Algorithm](#page-17-0)
- **[Linearization](#page-18-0)**

4 [Numerical Results](#page-18-0)

- **[Flow past a cylinder](#page-19-0)**
- \blacksquare [1:3 Expansion](#page-23-0)

5 [Conclusions & References](#page-30-0)

- Coupling with temperature is established through a temperature dependence with viscoelastic parameters, and adding the viscous dissipation term in the energy equation.
- We need four dimensionless numbers to define the problem.
- **Notailly 1** Viscous dissipation effect is very significant in two benchmark studied, due to implies an increment of the temperature.
- Temperature increment as function of the Weissenberg number while the stresses reduces when temperature increases.
- For the 1:3 expansion benchmark, the coupling with the temperature implies that
	- o The influence of other parameters has been explored varying the Prandtl number and the Brinkman too apart from Reynolds and Weissenberg numbers.
	- o As a general trend and for the models considered herein, the flow is more stable for low Re, high We, low Br and high Pr.

- **Moreno L., R. Codina R., Baiges J. & Castillo E. (2019). Logarithmic** conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation. Computer Methods in Applied Mechanics and Engineering, 354, 706-731.
- **Moreno L., Codina R. & Baiges J. (2020). Solution of transient** viscoelastic flow problems approximated by a term-by-term VMS stabilized finite element formulation using time-dependent subgrid-scales. Computer Methods in Applied Mechanics and Engineering, 367, 113074.
- Codina R. & Moreno L. (2021). Analysis of a stabilized finite element approximation for a linearized logarithm reformulation of the viscoelastic flow problem. ESAIM. Mathematical Modelling and Numerical Analysis, 55, 279-300.
- H. P. Baaijens, G. W. Peters, F. P. Baaijens, and H. E. Meijer. (1995). Viscoelasticflow past a confined cylinder of a polyisobutylene solution. Journal of Rheology, 39(6):1243–1277.
- P. J. Oliveira. (2003). Asymmetric flows of viscoelastic fluids in symmetric planarexpansion geometries. Journal of non-newtonian fluid mechanics, 114(1):33–63.

June 2021

Thank you for your attention!!

Laura Moreno Martínez

Laura Moreno Martínez Thermal coupling with viscoelastic flows problems 34/34