

IX International Conference on Coupled Problems in Science and Engineering

Thermal coupling simulations with a viscoelastic fluid flow

Laura Moreno Martínez Advisors: Ramon Codina and Joan Baiges

June, 2021

Introduction 00	Thermal Coupling	Finite Element approach 0000	Numerical Results	Conclusions & References
Outline				

1 Introduction

- Viscoelasticity
- Heat properties

2 Thermal Coupling

- Computing non-isothermal viscoelastic fluid flows
- Relevant dimensionless numbers
- Coupling with logarithmic formulation

3 Finite Element approach

- Discretization
- Stabilization
- Algorithm
- Linearization

4 Numerical Results

- Flow past a cylinder
- 1:3 Expansion

5 Conclusions & References

Introduction ●○	Thermal Coupling	Finite Element approach 0000	Numerical Results	Conclusions & References
Introduc	tion: Visco	elasticity		

- Viscoelastic fluids are a specific type of non-Newtonian fluids that exhibits a combination of elastic and viscous effects.
 - Visco: friction, irreversibility, loss of memory.
 - Elastic: recoil, internal energy storage.
- They have memory. The state-of-stress depends on the flow history.

Introduction o	Thermal Coupling	Finite Element approach 0000	Numerical Results	Conclusions & References
Introduc	tion: Heat r	properties		

Viscoelastic fluids have very **advantageous properties** for heat transfer and transport.

- As the elasticity of the flow increases, the dynamics of viscoelastic fluid change, turning out in a **higher mixing capacity**.
- Transformation of large amounts of mechanical energy into heat; and consequently in a rising of the temperature material.
- **Examples**: Extruders, heat exchange, fire brigades water tanks, petroleum extraction, reducing the drag forces in submarines, chemical reactors.

Introduction Th	ermal Coupling	Finite Element approach	Numerical Results	Conclusions & References
00 00				

1 Introduction

- Viscoelasticity
- Heat properties

2 Thermal Coupling

- Computing non-isothermal viscoelastic fluid flows
- Relevant dimensionless numbers
- Coupling with logarithmic formulation

3 Finite Element approach

- Discretization
- Stabilization
- Algorithm
- Linearization

4 Numerical Results

- Flow past a cylinder
- 1:3 Expansion

5 Conclusions & References

Introduction Thermal Coupling Finite Element approach Numerical Results Concl.

Conclusions & References

Computing non-isothermal viscoelastic fluid flows

Viscoelastic materials

The stresses depends on:

- **1** Deformation and deformation history.
- **2** Temperature and temperature history.

 \implies Temperature should be considered as an **independent** variable in the constitutive equations for the stress tensor.

Introduction 00 Finite Element approach 0000

Numerical Results

Conclusions & References

Computing non-isothermal viscoelastic fluid flows

Viscoelastic problem

Temperature dependence of the linear viscoelastic properties by

> THE PRINCIPLE OF TIME-TEMPERATURE SUPERPOSITION

If there is free convection flotation forces are considered too.

Temperature problem

In the energy equation now must be considered

- Mechanical power that is dissipated.
 - \implies Viscous part
- Mechanical part that is accumulated as elastic energy.
 - \implies Deformation part

 Introduction
 Thermal Coupling 000000000
 Finite Element approach 0000
 Numerical Results 00000000000
 Conclusions & References 0000

The principle of time-temperature superposition (1)

Viscoelastic fluid flow equations

Momentum equation:

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nabla \cdot \underbrace{(2\eta_{s}(\vartheta)\nabla^{s}\boldsymbol{u} + \boldsymbol{\sigma})}_{\boldsymbol{v}} + \nabla \boldsymbol{p} = \boldsymbol{f} + \underbrace{\gamma \rho \boldsymbol{g}(\vartheta_{0} - \vartheta)}_{\boldsymbol{v}}$$

Deviatoric extra stress tensor

Only for free convection

Continuity equation:

 $\nabla \cdot \boldsymbol{u} = 0$

Constitutive equation:

$$\frac{1}{2\eta_{\rho}(\vartheta)}(1+\mathfrak{h}(\sigma))\cdot\sigma-\nabla^{s}\boldsymbol{u}+\frac{\lambda(\vartheta)}{2\eta_{\rho}(\vartheta)}\left(\frac{\partial\sigma}{\partial t}+\boldsymbol{u}\cdot\nabla\sigma\overbrace{-\sigma\cdot\nabla\boldsymbol{u}+(\nabla\boldsymbol{u}^{T})\cdot\sigma}^{\text{Deformation terms}}\right)=0$$

Laura Moreno Martínez

Thermal coupling with viscoelastic flows problems

 Introduction
 Thermal Coupling
 Finite Element approach
 Numerical Results
 Conclusions & References

 The principle of time-temperature superposition (2)

Two different models in literature:

1) Williams-Landel-Ferry

$$g_{\mathsf{wlf}}(artheta) = \exp\left[-rac{m{c}_{\mathsf{a}}\cdot(artheta-artheta_0)}{m{c}_b+(artheta-artheta_0)}
ight]$$

where c_a and c_b are constants.

2) Arrhenius

$$g_{\mathsf{a}}(artheta) = \exp\left[c_r\left(rac{1}{artheta} - rac{1}{artheta_0}
ight)
ight]$$

where c_r is a constant parameter.

Relation between temperature and viscoelastic properties

 $\lambda(\vartheta) = \lambda(\vartheta_0)g(\vartheta)$ $\eta_0(\vartheta) = \eta_0(\vartheta_0)g(\vartheta)$

Energy equation

The heat source term is thus the classical one.

$$\rho C_{p} \left(\frac{\partial \vartheta}{\partial t} + \boldsymbol{u} \cdot \nabla \vartheta \right) - k \Delta \vartheta = \overbrace{\boldsymbol{\sigma} : \nabla^{s} \boldsymbol{u}}^{\text{Viscous dissipation}}$$

Viscous dissipation represents the **internal heat produced by internal work**: it means the contribution of the entropy elasticity.

Introduction Thermal Coupling Sinite Element approach Numerical Results Conclusions & References 0000 Four relevant dimensionless numbers

Reynolds number $\operatorname{Re} = \frac{\rho UL}{\eta_0}$ Inertial forces VS Viscous forces Weissenberg number We = $\frac{\lambda U}{I}$ Elastic forces VS Viscous forces

Prandtl number

$$\Pr = \frac{\eta_0 C_p}{k_f}$$

Momentum VS Thermal diffusivity

Brinkman number

$$\operatorname{Br} = rac{\eta_0 U^2}{k_f(\vartheta_w - \vartheta_0)}$$

Inertial power VS Heat Conduction

$$\frac{1}{2\eta_{p}(\vartheta)}(1+\mathfrak{h}(\sigma))\cdot\sigma-\nabla^{s}\boldsymbol{u}+\frac{\lambda(\vartheta)}{2\eta_{p}(\vartheta)}\left(\frac{\partial\sigma}{\partial t}+\underbrace{\sigma}_{\boldsymbol{u}}\cdot\nabla\sigma}_{\boldsymbol{u}}\cdot\nabla\sigma+(\nabla\boldsymbol{u}+(\nabla\boldsymbol{u}^{T})\cdot\sigma)\right)=\boldsymbol{0}$$

- We is small: Newtonian viscosity fluid.
- If We > 1: problems are extremally complicated.

Weissenberg number $We = \frac{\lambda U}{L}$

Logarithmic-Conformation Reformulation

$$oldsymbol{\psi} = \log(oldsymbol{ au}) = \log\left(rac{\lambda_0oldsymbol{\sigma}}{\eta_{
ho}} + oldsymbol{\mathsf{I}}
ight) \longrightarrow oldsymbol{\sigma} = rac{\eta_{
ho}}{\lambda_0}(\exp(oldsymbol{\psi}) - oldsymbol{\mathsf{I}})$$

Change of variable

Momentum equation:

$$-\nabla \cdot \frac{\eta_{p}(\vartheta)}{\lambda_{0}(\vartheta)} \exp(\boldsymbol{\psi}) - 2\nabla \cdot \eta_{s}(\vartheta)(\nabla^{s}\boldsymbol{u}) + \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{f}$$

Continuity equation:

$$abla \cdot \boldsymbol{u} = \boldsymbol{0}$$

Constitutive equation:

$$\frac{1}{2\lambda_{0}(\vartheta)}(\exp(\psi) - \mathbf{I}) \cdot (\mathfrak{h}(\exp(\psi)) + \mathbf{I}) - \nabla^{s}\mathbf{u} + \frac{\lambda(\vartheta)}{2\lambda_{0}(\vartheta)}(\mathbf{u} \cdot \nabla \exp(\psi)) \\ + \frac{\lambda(\vartheta)}{2\lambda_{0}(\vartheta)}(-\exp(\psi) \cdot \nabla \mathbf{u} - (\nabla \mathbf{u})^{T} \cdot \exp(\psi) + 2\nabla^{s}\mathbf{u}) = 0$$

Energy equation:

$$\rho C_{\rho} \left(\frac{\partial \vartheta}{\partial t} + \boldsymbol{u} \cdot \nabla \vartheta \right) - \boldsymbol{k} \Delta \vartheta = \left(\frac{\eta_{\rho}(\vartheta)}{\lambda_0(\vartheta)} \exp(\boldsymbol{\psi}) - \mathbf{I} \right) : \nabla^s \boldsymbol{u}$$

Laura Moreno Martínez

Thermal coupling with viscoelastic flows problems

Finding $\boldsymbol{U} = [\boldsymbol{u}, \boldsymbol{p}, \boldsymbol{\sigma}] \in \boldsymbol{\mathcal{X}} := \boldsymbol{\mathcal{V}} \times \boldsymbol{\mathcal{Q}} \times \boldsymbol{\Upsilon}$ such that

$$\mathcal{G}_{ ext{std}}(artheta; oldsymbol{U}, oldsymbol{V}) + B_{ ext{std}}(oldsymbol{U}; oldsymbol{U}, oldsymbol{V}) = L_{ ext{std}}(oldsymbol{V}),$$

for all $\boldsymbol{V} \in \boldsymbol{\mathcal{X}}$, where

$$\begin{aligned} \mathcal{G}_{\text{std}}(\hat{\vartheta}; \boldsymbol{U}, \boldsymbol{V}) = & \left(\rho \frac{\partial \boldsymbol{u}}{\partial t}, \boldsymbol{v}\right) + \left(\frac{\lambda(\hat{\vartheta})}{2\eta_0(\hat{\vartheta})} \frac{\partial \sigma}{\partial t}, \chi\right) + \rho C_{\rho} \left(\frac{\partial \vartheta}{\partial t}, \xi\right), \\ B_{\text{std}}(\hat{\boldsymbol{U}}; \boldsymbol{U}, \boldsymbol{V}) = & 2(\eta_s(\hat{\vartheta}) \nabla^s \boldsymbol{u}, \nabla^s \boldsymbol{v}) + \langle \rho \hat{\boldsymbol{u}} \cdot \nabla \boldsymbol{u}, \boldsymbol{v} \rangle + (\sigma, \nabla^s \boldsymbol{v}) \\ & -(\rho, \nabla \cdot \boldsymbol{v}) + (q, \nabla \cdot \boldsymbol{u}) + \left(\frac{1}{2\eta_{\rho}(\hat{\vartheta})} \left(\mathbf{I} + \mathfrak{h}(\hat{\sigma})\right) \cdot \sigma, \chi\right) \\ & -(\nabla^s \boldsymbol{u}, \chi) + \left(\frac{\lambda(\hat{\vartheta})}{2\eta_{\rho}(\hat{\vartheta})} \left(\hat{\boldsymbol{u}} \cdot \nabla \sigma - \sigma \cdot \nabla \hat{\boldsymbol{u}} - (\nabla \hat{\boldsymbol{u}})^T \cdot \sigma\right), \chi\right) \\ & + \rho C_{\rho} \left(\hat{\boldsymbol{u}} \cdot \nabla \vartheta, \xi\right) + (k \nabla \vartheta, \nabla \xi) - (\hat{\sigma} : \nabla^s \hat{\boldsymbol{u}}, \xi), \\ L_{\text{std}}(\boldsymbol{V}) = \langle \boldsymbol{f}, \boldsymbol{v} \rangle. \end{aligned}$$

Laura Moreno Martínez

Thermal coupling with viscoelastic flows problems

1 Introduction

- Viscoelasticity
- Heat properties

2 Thermal Coupling

- Computing non-isothermal viscoelastic fluid flows
- Relevant dimensionless numbers
- Coupling with logarithmic formulation

3 Finite Element approach

- Discretization
- Stabilization
- Algorithm
- Linearization

4 Numerical Results

- Flow past a cylinder
- 1:3 Expansion

5 Conclusions & References

Introduction 00	Thermal Coupling	Finite Element approach ○●○○	Numerical Results	Conclusions & References
Discreti	zation			

Spatial discretization

Galerkin finite element approximation. Consists in finding $\boldsymbol{U}_h: (0, T) \longrightarrow \boldsymbol{\mathcal{X}}_h$,

$$\underbrace{\mathcal{G}(\vartheta_h; \boldsymbol{U}_h, \boldsymbol{V}_h)}_{\text{Temporal terms}} + \underbrace{\mathcal{B}(\boldsymbol{U}_h; \boldsymbol{U}_h, \boldsymbol{V}_h)}_{\text{Bilinear form}} = L(\boldsymbol{V}_h),$$

for all
$$oldsymbol{V}_h = [oldsymbol{v}_h, q_h, oldsymbol{\chi}_h] \in oldsymbol{\mathcal{X}}_h$$

Time discretization

Monolithic time discretization. BDF1 and BDF2 schemes have been employed in the work to reach a stationary solution.

 To approximate the components of the continuous problem solution that cannot be resolved by the finite element mesh.

Introduction 00	Thermal Coupling	Finite Element approach ○○○●	Numerical Results	Conclusions & References
Algorith	m			

The algorithm is iterative for coupling but monolithic for the fluid flow problem. The parameters are continuously updated.

Introduction	Thermal Coupling	Finite Element approach	Numerical Results	Conclusions & Reference
			00000000000	

1 Introduction

- Viscoelasticity
- Heat properties

2 Thermal Coupling

- Computing non-isothermal viscoelastic fluid flows
- Relevant dimensionless numbers
- Coupling with logarithmic formulation

3 Finite Element approach

- Discretization
- Stabilization
- Algorithm
- Linearization

4 Numerical Results

- Flow past a cylinder
- 1:3 Expansion

5 Conclusions & References

- The boundary conditions of the problem are:
 - The inflow velocity is $u_x = 1.2 \text{m/s}$ and $u_y = 0$.
 - Symmetry conditions are prescribed along the axis.
 - For the outflow boundary the velocity is free in both components.
 - Non-slip conditions are set in the wall of the cylinder and on the top wall.
 - Temperature ϑ_0 is imposed at inlet and on the top wall.
- The viscoelastic fluid parameters are: $\rho = 921 \text{kg} \cdot \text{m}^{-3}$, $\beta = 0.5$ and $\eta_0(\vartheta_0) = 10^4$, $\lambda(\vartheta_0) = 0.1s$. WLF function.
- The temperature parameters are: $\vartheta_0=462$ K, $C_p = 1.5$ kJ(kg·K⁻¹) and $k_f = 0.17$ W(m·K⁻¹).
- Dimensionless numbers: Re=0.0033, We \in {0,1,2,3,4}, Pe=Pr Re >> 1.
- Spatial discretization: Mesh of triangles with 58591 elements and 36174 nodes.

Laura Moreno Martínez

Thermal coupling with viscoelastic flows problems

Laura Moreno Martínez

Thermal coupling with viscoelastic flows problems

Two main conclusions:

- Reduction of stresses when thermal coupling is considered.
- Increment of temperature when the Weissenberg number increase.

Laura Moreno Martínez

 L_2

• The inflow velocity is imposed u_x (different for each case) and $u_y = 0$.

 L_3

• For the outflow boundary the velocity is free in both components.

The computational domain: h=0.1; H=0.3; L_1 =60h; L_3 =120h; θ = 60°

Non-slip conditions are set on walls.

 L_1

- Temperature ϑ_0 =563.5K is imposed on walls and as initial condition.
- Temperature $\vartheta_i = 463.5$ K is imposed on the inlet.
- The viscoelastic fluid parameters are: $\rho = 1226 \text{kg} \cdot \text{m}^{-3}$, $\beta = 0.5$ and $\eta_0(\vartheta_0) = 4.07$, $\lambda(\vartheta_0)$ different for each case. Arrhenius function.
- The temperature parameters are: ϑ_0 =463.5K, C_p and k_f also is specific of each case.
- Dimensionless numbers: $Re \in [0, 200]$, $We \in [0, 3]$, $Pr \in [0, 25]$, $Br \in [0, 100]$.
- Spatial discretization: Structured mesh of bilinear elements.

Laura Moreno Martínez

Figure: Streamlines and temperature contours for Re = 10 and 30.

Laura Moreno Martínez

Introduction 00	Thermal Coupling	Finite Element appr 0000	oach Nun	nerical Results	Conclusions & Reference
Newtoni	an case. Va	lidation.			
	0	Re	=50		
		Tem 563.500 566	perature (K) 568 570 573.3	82	
				>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	Ø	Re	=100		2
	and the second s	Tem 563.500 566	Perature (K) 568 570 573.1	58	

Figure: Streamlines and temperature contours for $\mathrm{Re}=50$ and 100.

Laura Moreno Martínez

ntroduction	Thermal Coupling	Finite Element approach 0000	Numerical Results	Conclusions & References
1. Reynd	olds number	study		

Laura Moreno Martínez

Thermal coupling with viscoelastic flows problems

 Introduction
 Thermal Coupling
 Finite Element approach
 Numerical Results
 Conclusions & References

 2.
 Weissenberg number study

 Introduction
 Thermal Coupling
 Finite Element approach
 Numerical Results
 Conclusions & References

 3. Prandtl number study

Laura Moreno Martínez

Thermal coupling with viscoelastic flows problems

Introduction 00	Thermal Coupling	Finite Element approach 0000	Numerical Results ○○○○○○○○○○	Conclusions & References
4. Brinl	kman numb	er study		

Introduction	Thermal Coupling	Finite Element approach	Numerical Results	Conclusions & References
				●000

1 Introduction

- Viscoelasticity
- Heat properties

2 Thermal Coupling

- Computing non-isothermal viscoelastic fluid flows
- Relevant dimensionless numbers
- Coupling with logarithmic formulation

3 Finite Element approach

- Discretization
- Stabilization
- Algorithm
- Linearization

4 Numerical Results

- Flow past a cylinder
- 1:3 Expansion

5 Conclusions & References

Introduction 00	Thermal Coupling	Finite Element approach 0000	Numerical Results	Conclusions & References 0●00
Conclus	ions			

- Coupling with temperature is established through a temperature dependence with **viscoelastic parameters**, and adding the **viscous dissipation** term in the energy equation.
- We need **four** dimensionless numbers to define the problem.
- Viscous dissipation effect is very significant in two benchmark studied, due to implies an **increment of the temperature**.
- Temperature increment as function of the **Weissenberg number** while the stresses reduces when temperature increases.
- For the 1:3 expansion benchmark, the coupling with the temperature implies that
 - The influence of other parameters has been explored varying the **Prandtl** number and the **Brinkman** too apart from Reynolds and Weissenberg numbers.
 - As a general trend and for the models considered herein, the flow is **more stable** for low Re, high We, low Br and high Pr.

Introduction 00	Thermal Coupling	Finite Element approach 0000	Numerical Results	Conclusions & References
Referenc	ces			

- Moreno L., R. Codina R., Baiges J. & Castillo E. (2019). Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation. *Computer Methods in Applied Mechanics and Engineering*, 354, 706-731.
- Moreno L., Codina R. & Baiges J. (2020). Solution of transient viscoelastic flow problems approximated by a term-by-term VMS stabilized finite element formulation using time-dependent subgrid-scales. *Computer Methods in Applied Mechanics and Engineering*, 367, 113074.
- Codina R. & Moreno L. (2021). Analysis of a stabilized finite element approximation for a linearized logarithm reformulation of the viscoelastic flow problem. *ESAIM. Mathematical Modelling and Numerical Analysis*, 55, 279-300.
- H. P. Baaijens, G. W. Peters, F. P. Baaijens, and H. E. Meijer. (1995).
 Viscoelasticflow past a confined cylinder of a polyisobutylene solution.
 Journal of Rheology, 39(6):1243–1277.
- P. J. Oliveira. (2003). Asymmetric flows of viscoelastic fluids in symmetric planarexpansion geometries. *Journal of non-newtonian fluid mechanics*, 114(1):33–63.

ntroduction	Thermal Coupling	

Finite Element approach

Numerical Results

Conclusions & References

June 2021

Thank you for your attention!!

Laura Moreno Martínez

Laura Moreno Martínez

Thermal coupling with viscoelastic flows problems