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Introduction: Viscoelasticity

Viscoelastic fluids are a specific type of non-Newtonian
fluids that exhibits a combination of elastic and viscous
effects.

- Visco: friction, irreversibility, loss of memory.
- Elastic: recoil, internal energy storage.

They have memory. The state-of-stress depends on the flow
history.
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Introduction: Heat properties

Viscoelastic fluids have very advantageous properties for heat transfer and
transport.

As the elasticity of the flow increases, the dynamics of viscoelastic fluid
change, turning out in a higher mixing capacity.

Transformation of large amounts of mechanical energy into heat; and
consequently in a rising of the temperature material.

Examples: Extruders, heat exchange, fire brigades water tanks, petroleum
extraction, reducing the drag forces in submarines, chemical reactors.
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Computing non-isothermal viscoelastic fluid flows

Viscoelastic materials

The stresses depends on:

1 Deformation and deformation history.

2 Temperature and temperature history.

=⇒ Temperature should be considered as an independent
variable in the constitutive equations for the stress tensor.
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Computing non-isothermal viscoelastic fluid flows

Viscoelastic problem

Temperature dependence of
the linear viscoelastic
properties by

THE PRINCIPLE OF
TIME-TEMPERATURE

SUPERPOSITION

If there is free convection
flotation forces are considered
too.

Temperature problem

In the energy equation now
must be considered

Mechanical power that is
dissipated.
=⇒ Viscous part

Mechanical part that is
accumulated as elastic
energy.
=⇒ Deformation part
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The principle of time-temperature superposition (1)

Viscoelastic fluid flow equations

Momentum equation:

ρ
∂u
∂t

+ ρu · ∇u −∇ · (2ηs(ϑ)∇su + σ)︸ ︷︷ ︸
Deviatoric extra stress tensor

+∇p = f + γρg(ϑ0 − ϑ)︸ ︷︷ ︸
Only for free convection

Continuity equation:

∇ · u = 0

Constitutive equation:

1

2ηp(ϑ)
(1 + h(σ)) · σ −∇su +

λ(ϑ)

2ηp(ϑ)

∂σ
∂t

+ u · ∇σ

Deformation terms︷ ︸︸ ︷
−σ · ∇u + (∇uT ) · σ


= 0
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The principle of time-temperature superposition (2)

Two different models in literature:

1) Williams-Landel-Ferry

gwlf(ϑ) = exp

[
− ca · (ϑ− ϑ0)

cb + (ϑ− ϑ0)

]
where ca and cb are constants.

2) Arrhenius

ga(ϑ) = exp

[
cr

(
1

ϑ
− 1

ϑ0

)]
where cr is a constant parameter.

Relation between temperature and viscoelastic properties

λ(ϑ) = λ(ϑ0)g(ϑ)

η0(ϑ) = η0(ϑ0)g(ϑ)
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Viscous dissipation

Energy equation

The heat source term is thus the classical one.

ρCp

(
∂ϑ

∂t
+ u · ∇ϑ

)
− k∆ϑ =

Viscous dissipation︷ ︸︸ ︷
σ : ∇su

Viscous dissipation represents the internal heat produced by internal work: it
means the contribution of the entropy elasticity.
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Four relevant dimensionless numbers

Reynolds number

Re =
ρUL

η0

Inertial forces VS Viscous forces

Weissenberg number

We =
λU

L

Elastic forces VS Viscous forces

Prandtl number

Pr =
η0Cp

kf

Momentum VS Thermal diffusivity

Brinkman number

Br =
η0U

2

kf (ϑw − ϑ0)

Inertial power VS Heat Conduction
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The Weissenberg number and the Logarithmic
Conformation Reformulation

1

2ηp(ϑ)
(1 + h(σ)) · σ −∇su +

λ(ϑ)

2ηp(ϑ)

∂σ

∂t
+

convective term︷ ︸︸ ︷
u · ∇σ

deformation terms︷ ︸︸ ︷
−σ · ∇u + (∇uT ) · σ

 = 0

We is small: Newtonian
viscosity fluid.

If We > 1: problems are
extremally complicated.

Weissenberg number

We =
λU

L

Logarithmic-Conformation Reformulation

ψ = log(τ ) = log

(
λ0σ

ηp
+ I

)
−→ σ =

ηp
λ0

(exp(ψ)− I)

Change of variable

Laura Moreno Mart́ınez Thermal coupling with viscoelastic flows problems 12/ 34



Introduction Thermal Coupling Finite Element approach Numerical Results Conclusions & References

Thermal coupling using Logarithmic-Conformation
Reformulation.

Momentum equation:

−∇ · ηp(ϑ)

λ0(ϑ)
exp(ψ)− 2∇ · ηs(ϑ)(∇su) + ρu · ∇u +∇p = f

Continuity equation:
∇ · u = 0

Constitutive equation:

1

2λ0(ϑ)
(exp(ψ)− I ) · (h(exp(ψ)) + I )−∇su +

λ(ϑ)

2λ0(ϑ)
(u · ∇exp (ψ))

+
λ(ϑ)

2λ0(ϑ)

(
−exp (ψ) · ∇u − (∇u)T · exp (ψ) + 2∇su

)
= 0

Energy equation:

ρCp

(
∂ϑ

∂t
+ u · ∇ϑ

)
− k∆ϑ =

(
ηp(ϑ)

λ0(ϑ)
exp(ψ)− I

)
: ∇su
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Variational form of the problem (Standard formulation)

Finding U = [u, p,σ] ∈ X := V ×Q×Υ such that

Gstd(ϑ; U ,V ) + Bstd(U ; U ,V ) = Lstd(V ),

for all V ∈ X , where

Gstd(ϑ̂; U ,V ) =

(
ρ
∂u
∂t
, v
)

+

(
λ(ϑ̂)

2η0(ϑ̂)

∂σ

∂t
,χ

)
+ ρCp

(
∂ϑ

∂t
, ξ

)
,

Bstd(Û ; U ,V ) =2(ηs(ϑ̂)∇su,∇sv) + 〈ρû · ∇u, v〉+ (σ,∇sv)

−(p,∇ · v)+(q,∇ · u)+

(
1

2ηp(ϑ̂)
(I + h(σ̂)) · σ,χ

)

−(∇su,χ) +

(
λ(ϑ̂)

2ηp(ϑ̂)

(
û · ∇σ − σ · ∇û − (∇û)T · σ

)
,χ

)
+ρCp (û · ∇ϑ, ξ) + (k∇ϑ,∇ξ)− (σ̂ : ∇s û, ξ),

Lstd(V ) = 〈f , v〉.

Laura Moreno Mart́ınez Thermal coupling with viscoelastic flows problems 14/ 34



Introduction Thermal Coupling Finite Element approach Numerical Results Conclusions & References

1 Introduction
Viscoelasticity
Heat properties

2 Thermal Coupling
Computing non-isothermal viscoelastic fluid flows
Relevant dimensionless numbers
Coupling with logarithmic formulation

3 Finite Element approach
Discretization
Stabilization
Algorithm
Linearization

4 Numerical Results
Flow past a cylinder
1:3 Expansion

5 Conclusions & References

Laura Moreno Mart́ınez Thermal coupling with viscoelastic flows problems 15/ 34



Introduction Thermal Coupling Finite Element approach Numerical Results Conclusions & References

Discretization

Spatial discretization

Galerkin finite element approximation. Consists in finding
Uh : (0,T ) −→ X h,

G(ϑh; Uh,V h)︸ ︷︷ ︸
Temporal terms

+B(Uh; Uh,V h)︸ ︷︷ ︸
Bilinear form

= L(V h),

for all V h = [vh, qh,χh] ∈ X h

Time discretization

Monolithic time discretization. BDF1 and BDF2 schemes have
been employed in the work to reach a stationary solution.

Laura Moreno Mart́ınez Thermal coupling with viscoelastic flows problems 16/ 34



Introduction Thermal Coupling Finite Element approach Numerical Results Conclusions & References

Variational Multiscale Methods (VMS)

To approximate the components of the continuous problem solution that
cannot be resolved by the finite element mesh.

Split the unknowns as U = Uh︸︷︷︸
∈Xh

+ Ũ︸︷︷︸
∈X̃

and X = Xh
⊕

X̃ .

G(ϑh; Uh,V h) + B(Uh; Uh,V h)︸ ︷︷ ︸
Galerkin terms

+
∑
K

〈Ũ , L∗(Uh; V h)︸ ︷︷ ︸
adjoint operator of L

〉K

︸ ︷︷ ︸
Stabilization terms

= L(V h)

P̃ is the L2 projection onto the space of sub-grid scales,

α is a matrix computed within each element,

L is the operator associated to the problem.

Ũ = αP̃[F−Dt(Uh)− L(Uh; Uh)]

Sub-grid scale
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Algorithm

Viscoelastic uid 

ow problem

Temperature

problem

Solve for 

ComputeCompute

Solve for 

The algorithm is iterative for coupling but monolithic for the fluid
flow problem.
The parameters are continuously updated.
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Flow past a cylinder: Set up

The computational domain: R=0.03

The boundary conditions of the problem are:

◦ The inflow velocity is ux = 1.2m/s and uy = 0.
◦ Symmetry conditions are prescribed along the axis.
◦ For the outflow boundary the velocity is free in both components.
◦ Non-slip conditions are set in the wall of the cylinder and on the top wall.
◦ Temperature ϑ0 is imposed at inlet and on the top wall.

The viscoelastic fluid parameters are: ρ = 921kg ·m−3, β = 0.5 and

η0(ϑ0) = 104, λ(ϑ0) = 0.1s. WLF function.

The temperature parameters are: ϑ0=462K, Cp = 1.5kJ(kg · K−1) and

kf = 0.17W(m · K−1).

Dimensionless numbers: Re=0.0033, We ∈ {0, 1, 2, 3, 4}, Pe=Pr Re >> 1.

Spatial discretization: Mesh of triangles with 58591 elements and 36174 nodes.
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Flow past a cylinder: Distribution of temperature and
stresses
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Flow past a cylinder: Comparison of stresses
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Flow past a cylinder: Comparison of temperatures

Two main conclusions:

- Reduction of stresses when thermal coupling is considered.
- Increment of temperature when the Weissenberg number increase.
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1:3 Expansion. Set up

The computational domain: h=0.1; H=0.3; L1=60h; L3=120h; θ = 60◦

The boundary conditions of the problem are:

◦ The inflow velocity is imposed ux (different for each case) and uy = 0.
◦ For the outflow boundary the velocity is free in both components.
◦ Non-slip conditions are set on walls.
◦ Temperature ϑ0=563.5K is imposed on walls and as initial condition.
◦ Temperature ϑi = 463.5K is imposed on the inlet.

The viscoelastic fluid parameters are: ρ = 1226kg ·m−3, β = 0.5 and
η0(ϑ0) = 4.07, λ(ϑ0) different for each case. Arrhenius function.

The temperature parameters are: ϑ0=463.5K, Cp and kf also is specific of each
case.

Dimensionless numbers: Re ∈ [0, 200], We ∈ [0, 3], Pr ∈ [0, 25], Br ∈ [0, 100].

Spatial discretization: Structured mesh of bilinear elements.
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Newtonian case. Validation.

Figure: Streamlines and temperature contours for Re = 10 and 30.
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Newtonian case. Validation.

Figure: Streamlines and temperature contours for Re = 50 and 100.
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1. Reynolds number study

X

X

Xr1

r2

r3
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2. Weissenberg number study

X

X

Xr1

r2

r3
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3. Prandtl number study
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4. Brinkman number study

X

X

Xr1

r2

r3
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Conclusions

Coupling with temperature is established through a temperature
dependence with viscoelastic parameters, and adding the viscous
dissipation term in the energy equation.

We need four dimensionless numbers to define the problem.

Viscous dissipation effect is very significant in two benchmark studied,
due to implies an increment of the temperature.

Temperature increment as function of the Weissenberg number while
the stresses reduces when temperature increases.

For the 1:3 expansion benchmark, the coupling with the temperature

implies that

o The influence of other parameters has been explored varying the
Prandtl number and the Brinkman too apart from Reynolds and
Weissenberg numbers.

o As a general trend and for the models considered herein, the flow is
more stable for low Re, high We, low Br and high Pr.
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