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Introduction: What is viscoelasticity?

Fluids depending on their behaviour under the action of shear stress,
can be classified as Newtonian and non-Newtonian .

Viscoelastic fluids are a specific type of non-Newtonian fluids that

exhibits a combination of elastic and viscous effects.

Visco: friction, irreversibility, loss of memory.
Elastic: recoil, internal energy storage.

They have “memory”: the state-of-stress depends on the flow history.
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Introduction: Heat transfer processes

Viscoelastic fluids have very advantageous properties for heat transfer
and transport:

As the Weissenberg number increases, the dynamics of viscoelastic fluid
change. This turn out in a higher mixing capacity, with benefits in the
heat transfer between the fluid and the pipe transporting it.

Examples: Fire brigades water tanks, petroleum extraction, reducing the
drag forces in submarines, chemical reactors.
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Introduction: Modelling of polymeric fluids

Momentum equation:

ρ
∂u
∂t

+ ρu · ∇u −∇ · T +∇p = f

Continuity equation:

∇ · u = 0

Constitutive equation:

1

2ηp
(1 + h(σ)) · σ −∇su +

λ

2ηp

(
∂σ

∂t
+ u · ∇σ − σ · ∇u + (∇uT ) · σ

)
= 0

T = 2ηs(∇su) + σ

Polymeric fluids

T = 2η(∇su)

Newtonian viscous fluids

h(σ) = 0

Oldroyd-B

h(σ) =
ελ

ηp
σ

Giesekus

h(σ) =
ελ

ηp
tr(σ)

Phan-Thien-Tanner

Deviatoric extra stress tensor
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Introduction: The Weissenberg number

1

2ηp
(1 + h(σ)) · σ −∇su +

λ

2ηp

∂σ
∂t

+

convective term︷ ︸︸ ︷
u · ∇σ

deformation terms︷ ︸︸ ︷
−σ · ∇u + (∇uT ) · σ

 = 0

We is small: Newtonian
viscosity fluid.

When We > 1: problems are
extremally complicated.

We = λ
U

L

λ : Relaxation time
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The High Weissenberg Number Problem

1 Computational rheology: 1970s. FEM steady 2D flows.

2 All methods, were found to breakdown at a low Weissenberg
number.

3 The breakdown occurs for a critical value of the Weissenberg
number, but it is specific to each problem.

4 For approximately 30 years, the reason for this breakdown has
been a mystery, although it had been associated to a
numerical phenomenon.
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Logarithmic conformation formulation

Main features

Proposed by Fattal and Kupferman (2004).

Treats the exponential growth of the elastic stresses when the elastic
component becomes dominant.

Allows to extend the range of Weissenberg numbers. 3

More computational expensive than the standard formulation. 7

Physically-admissible conformation tensors must be symmetric and
positive-definite.

σ =
ηp
λ

(τ − I) −→ τ =
λσ

ηp
+ I

Conformation tensor is replaced by ψ = log(τ ).

Elastic stress tensor Conformation tensor
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New set of equations

ψ = log(
λ0σ

ηp
+ I) −→ σ =

ηp
λ0

(exp(ψ)− I)

Change of variable employed

Momentum equation:

− ηp
λ0
∇ · exp(ψ)− 2ηe∇ · (∇su) + ρu · ∇u +∇p = f

Continuity equation:

∇ · u = 0

Constitutive equation:

1

2λ0
(exp(ψ)− I)−∇su +

λ

2λ0
(u · ∇exp (ψ))

+
λ

2λ0

(
−exp (ψ) · ∇u − (∇u)T · exp (ψ) + 2∇su

)
= 0

New non-linearities!!

λ0 = max{kλ, λ0,min}
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Linearization of the exponential

exp(ψ) = exp(ψ̂ + δψ)︸ ︷︷ ︸ = exp(ψ̂) · exp(δψ)︸ ︷︷ ︸

δψ = ψ − ψ̂ is the incremental part

ψ̂ is a known tensor, calculated at the previous iteration

Consequently,

exp(ψ) ≈ exp(ψ̂) · (I + δψ) = exp(ψ̂) ·ψ + exp(ψ̂) · (I − ψ̂).

exp(δψ) ≈ I + δψ

Taylor expansion
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Spatial and temporal discretization

Galerkin FE approximation. Consists in finding Uh : (0, tf) −→ X h,

(Dt(Uh),V h)︸ ︷︷ ︸
Temporal terms

+B(u ;Uh,V h)︸ ︷︷ ︸
Bilinear form

= L(V h),

for all V h = [v h, qh,χh] ∈ X h

Monolithic time discretization the simplest BDF1 scheme

δ1f
n+1

δt
=

f n+1 − f n

δt
=

∂f

∂t

∣∣∣∣
tn+1

+O(δt).

∂(exp(ψ))

∂t

∣∣∣∣
tn+1

=
1

δt

[
exp(ψ̂

n+1
) ·ψn+1 + exp(ψ̂

n+1
)− exp(ψ̂

n+1
) · ψ̂n+1

− exp(ψn)
]

+O(δt) +O((δψn+1)2).
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Stabilized formulation: Variational multiscale methods

To approximate the components of the continuous problem solution that
cannot be resolved by the finite element mesh.

Split the unknowns as U = Uh︸︷︷︸
∈Xh

+ Ũ︸︷︷︸
∈X̃

and X = Xh
⊕

X̃ .

(Dt(Uh),V h)︸ ︷︷ ︸
Temporal terms

+B(uh; Uh,V h)︸ ︷︷ ︸
Bilinear terms︸ ︷︷ ︸

Galerkin terms

+
∑
K

〈Ũ , L∗(uh; V h)︸ ︷︷ ︸
adjoint operator of L

〉K

︸ ︷︷ ︸
Stabilization terms

= L(V h)

P̃ is the L2 projection onto the space of sub-grid scales,

α is a matrix computed within each element,

L is the operator associated to the problem.

Ũ = αP̃[F−Dt(Uh)− L(uh; Uh)]

Sub-grid scale
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Stabilized formulation: Main operators

L(û; U) : =


−
ηp

λ0

∇ · (exp(ψ))− 2ηe∇ · (∇su) + ρû · ∇u +∇p

∇ · u
1

2λ0

exp(ψ)−∇su +
λ

2λ0

(û · ∇ (exp(ψ))

− exp(ψ) · ∇û − (∇û)T · exp(ψ) + 2∇su
)



L∗0 (û; V ) : =


∇ · χ− 2ηe∇ · (∇sv)− ρû · ∇v −∇q

−∇ · v
1

2ηp
χ +∇sv −

λ

2ηp

(
û · ∇χ + χ · (∇û)T +∇û · χ

)


Galerkin terms︷ ︸︸ ︷
(Dt (Uh),V h) + B(uh ; Uh,V h) +

Stabilization terms︷ ︸︸ ︷∑
K

〈αP̃[F−Dt (Uh)− L(uh ; Uh)]︸ ︷︷ ︸
Ũ

,L∗0 (uh ; V h)〉K = L(V h)

Momentum

Continuity

Constitutive
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Stabilized formulation: Residual based vs Split OSS

S1(ûh ; Uh,V h) =
∑
K

α1

〈
P̃
[
ρ
∂uh

∂t
−
ηp

λ0

∇ · (exp(ψh)) −2ηe∇ · (∇suh) +ρûh · ∇uh +∇ph

]
,

−∇ · χh +2ηe∇ · (∇svh) +ρûh · ∇vh +∇qh

〉
K

1 The residual based stabilization contemplates all terms.

2 Split OSS stabilization: neglect the cross local inner-product terms
as well as some other terms that do not contribute to stability.

Dt (Uh),V h) + B(uh ; Uh,V h)︸ ︷︷ ︸
Galerkin terms

+

Stabilization terms︷ ︸︸ ︷
S1(uh ; Uh,V h) + S2(Uh,V h) + S3(uh ; Uh,V h) = L(V h)︸ ︷︷ ︸

Gal. term

+

Stab. term︷ ︸︸ ︷
R1(uh) + R3(uh)

P̃ = P⊥h

Split OSS
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Stabilized formulation: Some remarks

Benefits of Split vs Residual stabilization

Simpler than the residual. 3

For smooth solutions, it presents optimal convergence. 3

More robust if the solutions has strong gradients. 3

Remarks: Linearized problem and algorithm

Non-linear terms are linearized with the Newton-Raphson’s method.

Tensors ψ̂ and û are obtained from the previous iteration of the current
time step.

The orthogonal projection of any function f has been approximated as
P⊥h (f i ) ≈ f i − Ph(f i−1).
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Validation: Flow over a cylinder

We = 0.7 We = 0.9

Profile of the first component stress (σxx )
along a cylinder and downstream. Comparison of drag force coefficient.

Standard formulation break down around We=0.9. The logarithmic formulation
shows good stability for higher values.
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Validation: Contraction 4:1

We = 1.0 We = 3.0

We = 5.0 We = 7.0

Streamlines patterns in the contraction planar
for different Weissenberg number and

Re = 0.01.

Corner vortex length comparison with
finer mesh.

Standard form. is able to
simulate until We=6.5
approx.

Logarithmic formulation until
We=15 with the coarsest
mesh.
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Dynamic Subscales: Why are these necessary?

Classical residual-based stabilized methods for unsteady
incompressible flows may experience difficulties when the time
step is small relative to the spatial grid size.

Bochev et al. argue that δt > Ch2 a sufficient condition to
avoid instabilities.

For anisotropic space-time discretizations, this inequality is
not necessarily satisfied: a very common issue in
viscoelastic flow formulations.

Consequently...

New stabilization techniques must be designed to compute
time-dependent viscoelastic flow problems with high elasticity and
anisotropic space-time discretization.
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Dynamic subscales: Adding a temporal derivative

(Dt(Uh),V h)︸ ︷︷ ︸
Temporal terms

+B(uh; Uh,V h)︸ ︷︷ ︸
Bilinear terms︸ ︷︷ ︸

Galerkin terms

+
∑
K

〈Ũ , L∗(uh; V h)︸ ︷︷ ︸
adjoint operator of L

〉K

︸ ︷︷ ︸
Stabilization terms

= L(V h)

Quasi-static subscales:

α−1Ũ = P̃[F −Dt(Uh)− L(uh; Uh)]

Dynamic subscales:

∂Ũ
∂t

+α−1Ũ = P̃[F −Dt(Uh)− L(uh; Uh)]
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Dynamic subscales for residual-base stabilized formulation

S1(ûh; Uh,V h) =
∑
K

〈ũ,−∇ · χh + 2βη0∇ · (∇svh) + ρûh · ∇vh +∇qh
〉
K

ρ
∂ũ
∂t

+ α−1
1 ũ = P̃(

Momentum eq. residual︷ ︸︸ ︷
F 1 − ρ

∂uh

∂t
− L1(uh; Uh)),

ũn+1
1 =

(
ρ

1

δt
+

1

αn+1
1

)−1

︸ ︷︷ ︸
α1dyn

(
ρ

1

δt
ũn

1 − ρP̃(F 1 − ρ
∂uh

∂t
− L1(uh; Uh))

)

Discretization using a BDF1 scheme

Dt (Uh),V h) + B(uh ; Uh,V h)︸ ︷︷ ︸
Galerkin terms

+
Stabilization terms︷ ︸︸ ︷

S1(uh ; Uh,V h) + S2(Uh,V h) + S3(uh ; Uh,V h) = L(V h)︸ ︷︷ ︸
Gal. term

+
Stab. term︷ ︸︸ ︷

R1(uh) + R3(uh)
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Dynamic subscales for the term-by-term stabilized
formulation (SOSS)

S1(ûh; Uh,V h) =
∑
K

〈ũ1,−ρuh · ∇vh〉K +
∑
K

〈ũ2,−∇qh〉K

+
∑
K

〈ũ3,∇ · χh〉K +
∑
K

〈p̃,−∇ · vh〉K

ρ
∂ũ1

∂t
+ α−1

1 ũ1 = −P⊥h (ρuh · ∇uh),

ũn+1
1 =

(
ρ

1

δt
+

1

αn+1
1

)−1

︸ ︷︷ ︸
α1dyn

(
ρ

1

δt
ũn

1 − ρP⊥h (un+1
h · ∇un+1

h )

)
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Example: Flow over a cylinder. Comparing stabilizations

Coarse mesh δt = 0.1

P1 elements Time step (δt)
Method 0.050 0.0250 3.125× 10−3 1.562× 10−3

Static-OSS Solved Failed - -
Dyn-OSS Solved Solved Solved Solved
Static-SOSS Solved Solved Solved Failed
Dyn-SOSS Solved Solved Solved Solved

Table: Solved and failed cases We = 0.125, α1,min ≈ 1.156 × 10−3.

The most unstable stabilization is the quasi-static + OSS stabilization.
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Example: Flow over a cylinder. Comparing formulations

Coarse mesh δt = 0.1

Weissenberg (We)
Formulation 0.125 0.165 0.25 0.5

Std-Static Solved Failed - -
Std-Dyn Solved Solved Solved Failed
Log-Static Solved Solved Failed -
Log-Dyn Solved Solved Solved Solved

Table: Solved and failed cases for S-OSS formulations, dynamic and quasi-static,
δt = 0.1.

Dynamic formulations are more efficient avoiding elastic instabilities.
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Benchmark: Lid-driven cavity flow problem

Present Study

Fattal & Kupferman (2005)

Present Study

Fattal & Kupferman (2005)

Stabilization S-OSS
Formulation Quasi-static Dynamic

Standard Failed - time step 265 Failed - time step 1316
Logarithmic Failed - time step 340 Solved

Table: Comparison between different formulations, We = 1.0, δt = 0.0025. The time
step at which convergence fails is indicated.
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Thermal coupling

Energy equation is added:

ρCp

(
∂θ

∂t
+ u · ∇θ

)
= k∆θ + σ : ∇su︸ ︷︷ ︸

Viscous dissipation

Viscosity and relaxation time parameters now will be temperature
dependent: λ(θ) = λ(θ0)f (θ), and η0(θ) = η0(θ0)f (θ)

f (θ) = exp

[
− c1 · (θ − θ0)

c2 + (θ − θ0)

]
WLF model

f (θ) = exp

[
α

(
1

θ
− 1

θ0

)]
Arrhenius model

Algorithm: iterative, non-monolithic, executed in a partitioned manner
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Validation: Flow around a cylinder

Distribution of temperature (K) (below) and stress component (top)
around the cylinder for We=4.

Temperature rise as function of the Weissenberg number.

Reduction of the stress when temperature increase, due to the heating
of the material.
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Validation: Extension 1:3

Temperature on the walls
(563 K) is greater than the
fluid temperature at the
inlet (463 K).

However, viscous
dissipation generates
thermal energy in the
flowing fluid.

Highest temperature is
reached in the central
zone.
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Conclusions

1 The convergence of the proposed method has a strong
dependency on the treatment of the exponential function.

2 The resulting method allows to obtain globally stable
solutions, validated in different benchmarks.

3 It shows accuracy, optimal convergence for smooth solutions
and robustness.

4 Dynamic subscales allow to solve problems where two
different sources of instability can appear simultaneouly: one
originated by a time step small and the other the exponential
growth typical of high Weissenberg numbers.

5 In thermal coupling the viscous dissipation effect is
significant, especially for high-velocity flows or highly viscous
flows even at moderate velocities.
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Laura Moreno Mart́ınez
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