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Dynamic Subscales: Why are these necessary?

Classical residual-based stabilized methods for unsteady
incompressible flows may experience difficulties when the time
step is small relative to the spatial grid size.

Bochev et al. argue that δt > Ch2 a sufficient condition to
avoid instabilities.

For anisotropic space-time discretizations, this inequality is
not necessarily satisfied: a very common issue in
viscoelastic flow formulations.

Consequently...

New stabilization techniques must be designed to compute
time-dependent viscoelastic flow problems with high elasticity and
anisotropic space-time discretization.
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Logarithmic conformation formulation

Main features

High Weissenberg Number Problem: All numerical methods found a
breakdown at a low Weissenberg number.

Log-conformation formulation was proposed by Fattal and Kupferman
(2004).

Treats the exponential growth of the elastic stresses when the elastic
component becomes dominant.

Allows to extend the range of Weissenberg numbers. 3

More computational expensive than the standard formulation. 7

Physically-admissible conformation tensors must be symmetric and
positive-definite.

σ =
ηp
λ

(τ − I) −→ τ =
λσ

ηp
+ I

Conformation tensor is replaced by ψ = log(τ ).

Elastic stress tensor Conformation tensor
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Spatial and temporal discretization

Galerkin FE approximation. Consists in finding Uh : (0, tf) −→ X h,

(Dt(Uh),V h)︸ ︷︷ ︸
Temporal terms

+B(u ;Uh,V h)︸ ︷︷ ︸
Bilinear form

= L(V h),

for all V h = [v h, qh,χh] ∈ X h

Monolithic time discretization. BDF1 and BDF2 schemes have been
employed in the work.
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Stabilized formulation: Variational multiscale methods

To approximate the components of the continuous problem solution that
cannot be resolved by the finite element mesh.

Split the unknowns as U = Uh︸︷︷︸
∈Xh

+ Ũ︸︷︷︸
∈X̃

and X = Xh
⊕

X̃ .

(Dt(Uh),V h)︸ ︷︷ ︸
Temporal terms

+B(uh; Uh,V h)︸ ︷︷ ︸
Bilinear terms︸ ︷︷ ︸

Galerkin terms

+
∑
K

〈Ũ , L∗(uh; V h)︸ ︷︷ ︸
adjoint operator of L

〉K

︸ ︷︷ ︸
Stabilization terms

= L(V h)

P̃ is the L2 projection onto the space of sub-grid scales,

α is a matrix computed within each element,

L is the operator associated to the problem.

Ũ = αP̃[F−Dt(Uh)− L(uh; Uh)]

Sub-grid scale
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Stabilized formulation: dynamic subscales. Adding a
temporal derivative

(Dt(Uh),V h)︸ ︷︷ ︸
Temporal terms

+B(uh; Uh,V h)︸ ︷︷ ︸
Bilinear terms︸ ︷︷ ︸

Galerkin terms

+
∑
K

〈Ũ , L∗(uh; V h)︸ ︷︷ ︸
adjoint operator of L

〉K

︸ ︷︷ ︸
Stabilization terms

= L(V h)

Quasi-static subscales:

α−1Ũ = P̃[F −Dt(Uh)− L(uh; Uh)]

Dynamic subscales:

∂Ũ
∂t

+α−1Ũ = P̃[F −Dt(Uh)− L(uh; Uh)]
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Stabilized formulation: Residual based vs Split OSS.

S1(ûh ; Uh,V h) =
∑
K

α1dyn

〈
ρ

1

δt
ũn − P̃

[
ρ
∂uh

∂t
−
ηp

λ0

∇ · (exp(ψh)) −2ηe∇ · (∇suh) +ρûh · ∇uh +∇ph

]
,

−∇ · χh +2ηe∇ · (∇svh) +ρûh · ∇vh +∇qh

〉
K

1 The residual based stabilization contemplates all terms.

2 Split OSS stabilization: neglect the cross local inner-product terms
as well as some other terms that do not contribute to stability.

Dt (Uh),V h) + B(uh ; Uh,V h)︸ ︷︷ ︸
Galerkin terms

+

Stabilization terms︷ ︸︸ ︷
S1(uh ; Uh,V h) + S2(Uh,V h) + S3(uh ; Uh,V h) = L(V h)︸ ︷︷ ︸

Gal. term

+

Stab. term︷ ︸︸ ︷
R1(uh) + R3(uh)

P̃ = P⊥
h

Split OSS
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Example: Flow over a cylinder. Comparing stabilizations

Coarse mesh δt = 0.1

P1 elements Time step (δt)
Method 0.050 0.0250 3.125× 10−3 1.562× 10−3

Static-OSS Solved Failed - -
Dyn-OSS Solved Solved Solved Solved
Static-SOSS Solved Solved Solved Failed
Dyn-SOSS Solved Solved Solved Solved

Table: Solved and failed cases We = 0.125, α1,min ≈ 1.156 × 10−3.

The most unstable stabilization is the quasi-static + OSS stabilization.
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Example: Flow over a cylinder. Comparing formulations

Coarse mesh δt = 0.1

Weissenberg (We)
Formulation 0.125 0.165 0.25 0.5

Std-Static Solved Failed - -
Std-Dyn Solved Solved Solved Failed
Log-Static Solved Solved Failed -
Log-Dyn Solved Solved Solved Solved

Table: Solved and failed cases for S-OSS formulations, dynamic and quasi-static,
δt = 0.1.

Dynamic formulations are more efficient avoiding elastic instabilities.

Laura Moreno Mart́ınez Solution of transient viscoelastic flow problems 9/ 13



Introduction Stabilization Numerical Results Conclusions

Benchmark: Lid-driven cavity flow problem. Case Re=0.

Present Study

Fattal & Kupferman (2005)

Present Study

Fattal & Kupferman (2005)

Stabilization S-OSS
Formulation Quasi-static Dynamic

Standard Failed - time step 265 Failed - time step 1316
Logarithmic Failed - time step 340 Solved

Table: Comparison between different formulations, We = 1.0, δt = 0.0025. The time
step at which convergence fails is indicated.
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Thank you for your attention!!

Laura Moreno Mart́ınez
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