

25th International Congress of Theoretical and Applied Mechanics.

Solution of transient viscoelastic flow problems approximated by a VMS stabilized finite element formulation using time-dependent subrid-scales

> Laura Moreno Martínez Advisors: Ramon Codina and Joan Baiges

> > August, 2021

Classical residual-based stabilized methods for unsteady incompressible flows may experience **difficulties when the time step is small** relative to the spatial grid size.

- Bochev et al. argue that $\delta t > Ch^2$ a sufficient condition to avoid instabilities.
- For anisotropic space-time discretizations, this inequality is not necessarily satisfied: a very common issue in viscoelastic flow formulations.

Consequently...

New stabilization techniques must be designed to compute time-dependent viscoelastic flow problems with high elasticity and anisotropic space-time discretization.

Logarithmic conf	ormation formula	ation	
Introduction	Stabilization	Numerical Results	Conclusions
•••	000	000	000

Main features

- High Weissenberg Number Problem: All numerical methods found a breakdown at a low Weissenberg number.
- Log-conformation formulation was proposed by Fattal and Kupferman (2004).
- Treats the exponential growth of the elastic stresses when the elastic component becomes dominant.
- Allows to extend the range of Weissenberg numbers. ✓
- More computational expensive than the standard formulation. X
- Physically-admissible conformation tensors must be symmetric and positive-definite.

Elastic stress tensor
$$\sigma = \frac{\eta_p}{\lambda} (\tau - 1)$$

$$=rac{\eta_p}{\lambda}(au-\mathbf{I})\longrightarrow au=rac{\lambda\sigma}{\eta_p}+\mathbf{I}$$

• Conformation tensor is replaced by
$$\psi = \log(au).$$

Introduction	Stabilization	Numerical Results	Conclusions
000	000	000	000
Spatial and	temporal discret	ization	

Galerkin FE approximation. Consists in finding $U_h : (0, t_f) \longrightarrow \mathcal{X}_h$,

$$\underbrace{(\mathcal{D}_t(\boldsymbol{U}_h), \boldsymbol{V}_h)}_{\text{Temporal terms}} + \underbrace{B(\boldsymbol{u}, \boldsymbol{U}_h, \boldsymbol{V}_h)}_{\text{Bilinear form}} = L(\boldsymbol{V}_h),$$

for all $oldsymbol{V}_h = [oldsymbol{v}_h, oldsymbol{q}_h, oldsymbol{\chi}_h] \in oldsymbol{\mathcal{X}}_h$

 Monolithic time discretization. BDF1 and BDF2 schemes have been employed in the work.

• To approximate the components of the continuous problem solution that cannot be resolved by the finite element mesh.

Introduction 000	Stabilization ©©©	Numerical Results 000	Conclusions 000
Stabilized	formulation:	dynamic subscales. Adding a	
temporal	derivative		

Quasi-static subscales:

$$\boldsymbol{\alpha}^{-1} \tilde{\boldsymbol{\textit{U}}} = \tilde{P}[\boldsymbol{\textit{F}} - \mathcal{D}_t(\boldsymbol{\textit{U}}_h) - \mathcal{L}(\boldsymbol{\textit{u}}_h; \boldsymbol{\textit{U}}_h)]$$

Dynamic subscales:

$$\frac{\partial \tilde{\boldsymbol{\boldsymbol{\mathcal{U}}}}}{\partial t} + \boldsymbol{\alpha}^{-1} \tilde{\boldsymbol{\boldsymbol{\mathcal{U}}}} = \tilde{P}[\boldsymbol{F} - \mathcal{D}_t(\boldsymbol{\boldsymbol{\mathcal{U}}}_h) - \mathcal{L}(\boldsymbol{\boldsymbol{u}}_h; \boldsymbol{\boldsymbol{\mathcal{U}}}_h)]$$

- **1** The **residual** based stabilization contemplates all terms.
- **2** Split OSS stabilization: neglect the cross local inner-product terms as well as some other terms that do not contribute to stability.

Coarse mesh

 $\delta t = 0.1$

P1 elements		Т	ime step (δt)	
Method	0.050	0.0250	$3.125 imes10^{-3}$	$1.562 imes10^{-3}$
Static-OSS	Solved	Failed	-	-
Dyn-OSS	Solved	Solved	Solved	Solved
Static-SOSS	Solved	Solved	Solved	Failed
Dyn-SOSS	Solved	Solved	Solved	Solved

Table: Solved and failed cases We = 0.125, $\alpha_{1,min} \approx 1.156 \times 10^{-3}$.

The most unstable stabilization is the quasi-static + OSS stabilization.

		Weissenb	erg (We)	
Formulation	0.125	0.165	0.25	0.5
Std-Static	Solved	Failed	-	-
Std-Dyn	Solved	Solved	Solved	Failed
Log-Static	Solved	Solved	Failed	-
Log-Dyn	Solved	Solved	Solved	Solved

Table: Solved and failed cases for S-OSS formulations, dynamic and quasi-static, $\delta t = 0.1. \label{eq:solved}$

Dynamic formulations are more efficient avoiding elastic instabilities.

	Stabilizat	ion S-OSS
Formulation	Quasi-static	Dynamic
Standard	Failed - time step 265	Failed - time step 1316
Logarithmic	Failed - time step 340	Solved

0

- Fattal & Kupferman (2005)

 $\psi_{xx}(1/2, y)$

-0.5

0

10

0.2

0.4 0.6

Table: Comparison between different formulations, We = 1.0, δt = 0.0025. The time step at which convergence fails is indicated.

Laura Moreno Martínez

 Γ_{wall}

0.8

Introduction	Stabilization	Numerical Results	Conclusions
000	000		●00
References			

Presentation based on the paper:

L. Moreno, R. Codina and J.Baiges. Solution of transient viscoelastic flow problems aproximated by a term-by-term VMS stabilized finite element formulation using time-dependent subgrid-scales. Computer Methods in Applied Mechanics and Engineering 367 (2020): 113074.

Introduction	Stabilization	Numerical Results	Conclusions
000	000	000	o●o
References			

- R. Fattal and R. Kupferman. Constitutive laws for the matrix-logarithm of the conformation tensor. Journal of Non-Newtonian Fluid Mechanics, 123(2-3):281–285, 2004.
- E. Castillo and R. Codina. Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem. Computer Methods in Applied Mechanics and Engineering, 279:579–605, 2014.
- M. A Hulsen, R. Fattal, and R. Kupferman. Flow of viscoelastic fluids past a cylinder at high weissenberg number: stabilized simulations using matrix logarithms. Journal of Non-Newtonian Fluid Mechanics, 127(1):27–39, 2005.
- P. B. Bochev, M. D. Gunzburger, and J. N. Shadid. "On inf-sup stabilized finite element methods for transient problems." Computer Methods in Applied Mechanics and Engineering 193.15-16: 1471-1489, 2004.
- E. Castillo and R. Codina. Dynamic term-by-term stabilized finite element formulation using orthogonal subgrid-scales for the incompressible Navier–Stokes problem. Computer Methods in Applied Mechanics and Engineering, 349, 701-721. 2019

Laura Moreno Martínez

Solution of transient viscoelastic flow problems

000	Introd	uction	
	000		

Stabilization

Numerical Results

25th International Congress of Theoretical and Applied Mechanics

August 2021

Thank you for your attention!!

Laura Moreno Martínez

Laura Moreno Martínez

Solution of transient viscoelastic flow problems