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Introduction: Viscoelasticity

What is viscoelasticity?

• Fluids depending on their behaviour under the action of shear
stress, can be classified as Newtonian and non-Newtonian.
• Viscoelastic fluids are a specific type of non-Newtonian fluids

that exhibits a combination of elastic and viscous effects.
• Visco: friction, irreversibility, loss of memory.
• Elastic: recoil, internal energy storage.

• They have “memory”: the state-of-stress depends on the flow
history.



Introduction: Viscoelasticity

Other industry applications

• Most viscoelastic fluids
are made of, or contain
polymers (polymer
solutions and polymer
melts).



Introduction: Modelling of polymeric fluids

Like all fluids, viscoelastic fluids are governed by:

• Momentum equation: ρ
∂u

∂t
+ ρu · ∇u −∇ · T +∇p = f

• Continuity equation: ∇ · u = 0

For Newtonian viscous
fluids:
T = η(∇u +∇tu)

For Polymeric fluids:
T = ηs(∇u +∇tu) + σ



Introduction: Constitutive models.

ρ
∂u

∂t
+ ρu · ∇u −∇ · T +∇p = f in Ω, t ∈]0, tf [,

∇ · u = 0 in Ω, t ∈]0, tf [,

λ

2η0

∂σ

∂t
− (1− β)∇s

u +
λ

2η0
(u · ∇σ − g(u,σ))

1

2η0
(1 + h(σ)) · σ = 0 in Ω, t ∈]0, tf [,

where g(u,σ) = σ · ∇u − (∇uT ) · σ and T = 2βη0∇su + σ.

Oldroyd-B
h(σ) = 0

Giesekus

h(σ) =
ελ

ηp
σ

Phan-Thien-Tanner

h(σ) =
ελ

ηp
tr(σ)



Introduction: The Weissemberg number

λ

2η0

∂σ

∂t
− (1− β)∇s

u +
λ

2η0
(u · ∇σ − g(u,σ)) +

1

2η0
(1 + h(σ)) · σ = 0

We = λ
U

L

• When We is small we have Newtonian viscosity fluid.

• When We > 1 the problems are interesting and extremally
complicated.



Introduction: Stabilized formulation

Variational Multiscales Methods (VMS)

• Approximating the effect of the components of the solution of
the continuous problem that cannot be resolved by the finite
element mesh.

• Split the unknown as U = Uh + U
′, where Uh ∈ Xh and

U
′ ∈ X ′.

The spaces Xh and X ′ are such that X = Xh

⊕
X ′.

A standard problem, is exactly equivalent to:(
M(U)

∂U

∂t
,V h

)
+ 〈L(U ,U),V h〉 = 〈F ,V h〉 ∀V h ∈ X h,(

M(U)
∂U

∂t
,V ′

)
+ 〈L(U ,U),V ′〉 = 〈F ,V ′〉 ∀V ′ ∈ X ′,



Introduction: Stabilized formulation

VMS in the viscoelastic case

(Dt(Uh),V h) + B(uh;Uh,V h) +
∑

K 〈Ũ ,L∗(uh;V h)〉K = 〈f , vh〉,

where

• Dt represents the temporal terms.

• B is the bilinear form of the variational problem.

• Ũ = αP̃[F− L(uh;Uh)] where P̃ is the L2 projection onto the
space of sub-grid scales, α is a matrix computed within each
element and L is the operator associated to the problem.

• L∗ is the formal adjoint of the operator.

E. Castillo and R. Codina. Finite Element approximation of the
viscoelastic flow problem: A non-residual based stabilized formulation.
Computer and Fluids, 142 (2015)
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Thermal coupling: Introduction

Heat transfer processes

• Viscoelastic fluids have very advantageous properties for heat
transfer and transport.

• As the Weissemberg number increases, the dynamics of
viscoelastic fluid change. This turn out in a higher mixing
capacity, with benefits in the heat transfer between the fluid
and the pipe transporting it.

• Examples: Fire brigades water tanks, petroleum extraction,
reducing the drag forces in submarines, chemical reactors.



Thermal coupling

Mathematical model

• The constitutive model used in literature for the coupling is the
Phan Thien Tanner (PTT) model.

• Viscous dissipation is added in energy equation.

• Temperature dependency of the physical parameters λ and η0.

Energy equation

ρCp

(
∂θ

∂t
+ u · ∇θ

)
= k∆θ + σ : ∇su

WLF function
λ(θ) = λ(θ0)f (θ),
η0(θ) = η0(θ0)f (θ)
f (θ) =

exp

[
− c1 · (θ − θ0)

c2 + (θ − θ0)

]
Gerrit W.M. Peters, Frank P.T. Baaijens. Modelling of non-isothermal viscoelastic
flows. Journal of non-Newtonians Fluid Mechanics, 68 (1997): 205-224



Thermal coupling: Fully system of equations
Momentum equation:

ρ
∂u

∂t
+ ρu · ∇u−∇ · σ − 2βη0(θ)∇ · (∇s u) +∇p = f in Ω, t ∈]0, tf [,

Continuity equation:

∇ · u = 0 in Ω, t ∈]0, tf [,

Constitutive equation (PTT):

1

2η0(θ)
σ − (1− β)∇su +

λ(θ)

2η0(θ)
(
∂σ

∂t
+ u · ∇σ − σ · ∇u− (∇uT ) · σ)

+
1

2η0(θ)

(
ε

λ(θ)

(1− β)η0(θ)
Tr(σ)σ

)
= 0 in Ω, t ∈]0, tf [,

Energy equation:

ρCp

(
∂θ

∂t
+ u · ∇θ

)
− k∆θ − σ : ∇su = 0, in Ω, t ∈]0, tf [



Thermal coupling: Numerical Results

Algorithm employed is

• iterative

• non-monolithic

• executed in a partitioner
manner.

Time descretization scheme
Classical backward-difference
(BDF) approximations.

δkg
n+1 =

1

γk

(
gn+1 −

k−1∑
i=0

ϕi
kg

n−i

)

Validation: Flow around a cylinder

Scheme of the problem.



Thermal coupling: Validation

Distribution of temperature θ (below) and stress component σxx
(top) around the cylinder for We=4.

Gerrit W.M. Peters, Frank P.T. Baaijens. Modelling of non-isothermal viscoelastic
flows. Journal of non-Newtonians Fluid Mechanics, 68 (1997): 205-224



Thermal coupling: Validation

Temperature θ for We=1,2 and 4 as a
function of x-coordinate.

Stress component σxx , We=4, in
isothermal and non-isothermal case as a
function of x-coordinate.
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High Weissemberg Numbers: Turbulence

• Takes place when the elastic part of the fluid becomes relevant, that
is, at high Weissemberg numbers.

• Transition to turbulence has been shown to take place earlier and at
lower Reynolds number in viscoelastic solutions.

• The addition of long-chain polymers can help to reduce the
turbulent friction reductions in the boundary layer.

• Examples: polymeric solutions and polymer casting.



The High Weissemberg Number Problem (HWNP)

• Computational rheology started in the early 1970s. Mostly
finite-element methods for steady 2D flows.

• All methods, without exception, were found to break down at
a “ustratingly low value” of the Weissenberg number.

• The reason for this breakdown has remained somewhat of a
mystery. Evidence that it is a numerical phenomenon.

• The high-Weissenberg number problem has haunted
computational rheology for over 30 years.



Logarithmic conformation reformulation (LCR)

Reformulating constitutive laws

• Was proposed by Fattal and Kupferman.

• Seeks to treat the exponential growth of the elastic stresses
when the elastic component becomes dominant.

• This allows to extend the range of Weissemberg numbers.



Logarithmic conformation reformulation (LCR)

• Physically-admissible conformation tensors must, by definition,
be symmetric and positive-definite.

σ =
ηp
λ0

(τ − I) −→ τ =
λ0σ

ηp
+ I

• The conformation tensor is replaced by a new variable
ψ = log(τ ).

So, inserting the descomposition in the equation, the constitutive
law transforms into

1

2λ0
(exp(ψ)− I)−∇s

u +
λ

2λ0
(u · ∇ exp (ψ))

λ

2λ0
+
(
− exp (ψ) · ∇u − (∇u)T · exp (ψ) + 2∇s

u
)

= 0



Logarithmic conformation reformulation (LCR)

Consequently, the new set of equations to be solved can be written
as follows

−η0(1− β)

λ0
∇ · exp(ψ)− 2β∇ · (∇s

u) + ρu · ∇u +∇p = f ,

∇ · u = 0,

1

2λ0
(exp(ψ)− I)−∇s

u +
λ

2λ0
(u · ∇ exp (ψ)) +

λ

2λ0

(
− exp (ψ) · ∇u − (∇u)T · exp (ψ) + 2∇s

u
)

= 0



Logarithmic conformation reformulation (LCR)

We have developed the linearization of LCR problem in order to
design a stabilized formulation applying the Variational Multi-Scale
method.

Difficulties in implementation

• Apart from the well-known non-linearities, a exponential
function must be linearized.

• We have to be especially careful with convective term
u · ∇exp(ψ) and its linearization.

• The computational cost increases because of the calculation
of the exponential.
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Summarizing

• Viscoelastic fluids have a wide range of applications in
industry.

• Particularly, they have a higher mixing capacity and heat
transfer properties.

• Simulating viscoelastic fluid flows at high Weissemberg
numbers is currently one of the biggest challenges in
computational rheology.
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Women in science: statistics

Statistics from USA until 2011 in fields of STEM (Science,
Technology, Engineering and Mathematics).



Women in science: statistics



Women in science: engineering and mathematics



Thank you for your attention

Laura Moreno Mart́ınez
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