

XLII CILAMCE AND III PANACM – Río de Janeiro 2021

Computation of transient viscoelastic flow problems approximated by a VMS stabilized Finite Element formulation using time-dependent subgrid-scales for monolithic and fractional step schemes

Laura Moreno, Ramon Codina and Joan Baiges

November, 2021

Outline

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

1 [Introduction](#page-2-0)

2 [Stabilization based on time-dependent subgrid-scales](#page-6-0)

3 [Fractional step scheme for the LCR](#page-11-0)

4 [Numerical results](#page-16-0)

What is a viscoelastic fluid?

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0)

- **N** Viscoelastic fluids are a specific type of **non-Newtonian fluids** that exhibit a combination of elastic and viscous effects.
	- Visco: friction, irreversibility, loss of memory.
	- Elastic: recoil, internal energy storage.
- This combination of properties is explained by a complex internal structure.
- **They have memory.** The state-of-stress depends on the flow history.

wikipedia

Modelling of polymeric fluid flows

 $\nabla \cdot \mathbf{u} = 0$

Momentum equation:

Constitutive equation:

 $ho \frac{\partial u}{\partial t}$ $\frac{\partial \mathbf{a}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} - \nabla \cdot \mathbf{T} + \nabla p = \mathbf{0}$ Continuity equation:

 $\mathbf{T}=2\eta(\nabla^s u)$

Deviatoric extra stress tensor

Newtonian viscous fluids

$$
\boxed{\mathsf{T}=2\eta_s(\nabla^s\bm{u})+\bm{\sigma}}
$$

Polymeric fluids

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0)

[Conclusions](#page-22-0)

The Weissenberg number and HWNP

We is small: viscous effect relevant, elastic behavior small.

If $We > 1$: problems become extremely complicated.

Weissenberg number $We = \frac{\lambda U}{l}$ L

Problem: The High Weissenberg Number Problem (HWNP) "Solution": the Log-Conformation Reformulation (LCR)

Motivation and goal

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0)

[Conclusions](#page-22-0)

Classical residual-based stabilized methods may experience difficulties when the time step is small relative to the spatial grid size.

- Bochev et al. demonstrate that $\delta t > C h^2$ is a sufficient condition to avoid instabilities.
- For anisotropic space-time discretizations, this inequality is not necessarily satisfied.

Goal

- **1** Design of new stabilization techniques.
- 2 Design fractional step schemes in order to reduce the expensive computational cost.

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

1 [Introduction](#page-2-0)

2 [Stabilization based on time-dependent subgrid-scales](#page-6-0)

3 [Fractional step scheme for the LCR](#page-11-0)

4 [Numerical results](#page-16-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0)

Spatial and temporal discretizations

Spatial discretization

Galerkin finite element approximation. It consists in finding U_h : $(0, T) \longrightarrow \mathcal{X}_h$,

$$
\underbrace{(G(\boldsymbol{U}_h),\boldsymbol{V}_h)}_{\text{Temporal terms}} + \underbrace{B(\boldsymbol{u}_h,\boldsymbol{U}_h,\boldsymbol{V}_h)}_{\text{Semi-linear form}} = L(\boldsymbol{V}_h),
$$

for all $V_h \in \mathcal{X}_h$.

Time discretization

Monolithic and fractional step time discretization. BDF1 and BDF2 schemes have been employed in this work.

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

```
Conclusions
```
Stabilization technique: Variational Multi-Scale (VMS) Methods

Objective: to approximate the components of the continuous problem solution that cannot be resolved by the finite element mesh.

■ Unknown splitting:
$$
U = U_h + \underbrace{\tilde{U}}_{\in \tilde{X}_h} + \underbrace{\tilde{U}}_{\in \tilde{\mathcal{X}}} \text{ and } \mathcal{X} = \mathcal{X}_h \oplus \tilde{\mathcal{X}}.
$$

$$
\underbrace{(\mathcal{G}(\boldsymbol{U}_h), \boldsymbol{V}_h) + \mathcal{B}(\boldsymbol{u}_h; \boldsymbol{U}_h, \boldsymbol{V}_h)}_{\text{Galerkin terms}} + \underbrace{\langle \mathcal{G}(\tilde{\boldsymbol{U}}), \boldsymbol{V}_h \rangle + \sum_{\mathcal{K}} \langle \tilde{\boldsymbol{U}}, \underbrace{\mathcal{L}^*(\boldsymbol{u}_h; \boldsymbol{V}_h)}_{\text{adjoint operator of } \mathcal{L}}}_{\text{Stabilization terms}} \rangle_{\mathcal{K}} = L(\boldsymbol{V}_h)
$$
\n
$$
\underbrace{\frac{\partial \tilde{\boldsymbol{U}}}{\partial t} + \alpha^{-1} \tilde{\boldsymbol{U}} = \tilde{P}[\mathbf{F} - \mathcal{G}(\boldsymbol{U}_h) - \mathcal{L}(\boldsymbol{u}_h; \boldsymbol{U}_h)]}
$$

Sub-grid scale

- \tilde{P} is the L^2 projection onto the space of sub-grid scales,
- α is a matrix computed within each element,
- \blacksquare $\mathcal L$ is the operator associated with the problem.

Dynamic subscales for residual-based stabilized formulation

Galerkin terms $\overline{g(u_h, v_h) + g(u_h; u_h, v_h)} + \overline{(g(\tilde{u}), v_h) + s_1(u_h; u_h, v_h) + s_2(u_h, v_h) + s_3(u_h; u_h, v_h)} =$ $L(v_h, v_h) + L(v_h, v_h) + L(v_h, v_h)$ Stabilization terms $L(V_h)$ Gal. term

$$
S_1(\hat{\boldsymbol{u}}_h; \boldsymbol{U}_h, \boldsymbol{V}_h) = \sum_{\boldsymbol{K}} \langle \tilde{\boldsymbol{u}}, -\nabla \cdot \boldsymbol{\chi}_h + 2\beta \eta_0 \nabla \cdot (\nabla^s \boldsymbol{v}_h) + \rho \hat{\boldsymbol{u}}_h \cdot \nabla \boldsymbol{v}_h + \nabla q_h \rangle_{\boldsymbol{K}}
$$

\n
$$
\rho \frac{\partial \tilde{\boldsymbol{u}}}{\partial t} + \alpha_1^{-1} \tilde{\boldsymbol{u}} = \tilde{P}(\tilde{\boldsymbol{F}}_1 - \rho \frac{\partial \boldsymbol{u}_h}{\partial t} - \mathcal{L}_1(\boldsymbol{u}_h; \boldsymbol{U}_h)),
$$

$$
\hat{\boldsymbol{u}}^{n+1} = \underbrace{\left(\rho \frac{1}{\delta t} + \frac{1}{\alpha_1^{n+1}}\right)^{-1}}_{\alpha_{1 \text{dyn}}} \left(\rho \frac{1}{\delta t} \tilde{\boldsymbol{u}}^n - \rho \tilde{P}(\boldsymbol{F}_1 - \rho \frac{\partial \boldsymbol{u}_h}{\partial t} - \mathcal{L}_1(\boldsymbol{u}_h; \boldsymbol{U}_h))\right)
$$

Discretization using a BDF1 scheme

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

Stabilized formulation: Residual-based vs Split OSS

1 The residual-based stabilization contemplates all terms.

[Introduction](#page-2-0) Stabilization [based on time](#page-6-0)dependent subgrid-scales [Fractional step](#page-11-0) scheme for the LCR [Numerical](#page-16-0) results [Conclusions](#page-22-0)

> 2 **Split OSS stabilization**: neglect the cross local inner-product terms as well as some other terms that do not contribute to stability. In that case $\tilde{P} = P_h^{\perp}$.

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

1 [Introduction](#page-2-0)

2 [Stabilization based on time-dependent subgrid-scales](#page-6-0)

3 [Fractional step scheme for the LCR](#page-11-0)

4 [Numerical results](#page-16-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

Continuity

Constitutive

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

Fractional step. Algebraic system

$$
\text{Momentum} \quad M_{\boldsymbol{u}} \frac{\delta_k}{\delta t} \mathbf{U}^{n+1} + K_{\boldsymbol{u}} \left(\mathbf{U}^{n+1} \right) \mathbf{U}^{n+1} + G \mathbf{P}^{n+1} - D_{\boldsymbol{\psi}}^{\mathbf{E}} \boldsymbol{\Psi}^{n+1} = \mathbf{F}_{\boldsymbol{u}}^{\mathbf{E}}, \tag{1}
$$

$$
D\mathbf{U}^{n+1}=\mathbf{0},\tag{2}
$$

$$
M_{\psi}^{\rm E} \frac{\delta_k}{\delta t} \Psi^{n+1} + K_{\psi}^{\rm E} \left(\mathbf{U}^{n+1} \right) \Psi^{n+1} - S \mathbf{U}^{n+1} = \mathbf{F}_{\psi}^{\rm E}.
$$
 (3)

$$
\begin{bmatrix} A_{11} & A_{12} & A_{13} \ A_{21} & A_{22} & 0 \ A_{31} & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{U}^{n+1} \\ \mathbf{\Psi}^{n+1} \\ \mathbf{P}^{n+1} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_1^{n+1} \\ \mathbf{F}_2^{n+1} \\ \mathbf{F}_3^{n+1} \end{bmatrix}
$$

$$
A_{11} = \frac{1}{\gamma_k \delta t} M_{\mathbf{u}} + K_{\mathbf{u}} (\mathbf{U}^{n+1}), \qquad A_{12} = -D_{\psi}^{\mathbf{E}},
$$

\n
$$
A_{21} = -S, \qquad A_{22} = \frac{1}{\gamma_k \delta_K} M_{\psi}^{\mathbf{E}} + K_{\psi}^{\mathbf{E}} (\mathbf{U})^{n+1},
$$

\n
$$
A_{13} = G, \qquad A_{31} = D,
$$

\n
$$
\mathbf{F}_1 = \mathbf{F}_{\mathbf{u}}^{\mathbf{E}} + \frac{1}{\delta t \gamma_k} \left(\sum_{i=0}^{k-1} \varphi_k^i \mathbf{U}^{n-i} \right), \qquad \mathbf{F}_3 = 0,
$$

\n
$$
\mathbf{F}_2 = \mathbf{F}_{\psi}^{\mathbf{E}} + \frac{1}{\delta t \gamma_k} \left(\sum_{i=0}^{k-1} \varphi_k^i \mathbf{V}^{n-i} \right).
$$

 $\sqrt{ }$ $\overline{}$

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

Fractional step. Equivalent form

$$
M_{\boldsymbol{u}}\frac{\delta_{k}}{\delta t}\tilde{\mathbf{U}}^{n+1}+K_{\boldsymbol{u}}\left(\tilde{\mathbf{U}}^{n+1}\right)\tilde{\mathbf{U}}^{n+1}+G\hat{\mathbf{P}}_{k'-1}^{n+1}-D_{\boldsymbol{\psi}}^{\mathbf{E}}\hat{\mathbf{\Psi}}_{k'-1}^{n+1}=\mathbf{F}_{\boldsymbol{u}}^{\mathbf{E}},\qquad(4)
$$

$$
M_{\boldsymbol{u}} \frac{\delta_{k}}{\delta t} \left(\mathbf{U}^{n+1} - \tilde{\mathbf{U}}^{n+1} \right) + N_{\boldsymbol{u}} + G \left(\mathbf{P}^{n+1} - \hat{\mathbf{P}}^{n+1}_{k'-1} \right) - D_{\boldsymbol{\psi}}^{\mathrm{E}} \left(\boldsymbol{\Psi}^{n+1} - \hat{\boldsymbol{\Psi}}^{n+1}_{k'-1} \right) = \mathbf{0}, \tag{5}
$$

$$
M_{\Psi}^{\rm E} \frac{\delta_k}{\delta t} \tilde{\Psi}^{n+1} + K_{\Psi}^{\rm E} \left(\tilde{\mathbf{U}}^{n+1} \right) \tilde{\Psi}^{n+1} - S \tilde{\mathbf{U}}^{n+1} = \mathbf{F}_{\Psi}^{\rm E}, \qquad (6)
$$

$$
M_{\psi}^{\rm E} \frac{\delta_k}{\delta t} \left(\Psi^{n+1} - \tilde{\Psi}^{n+1} \right) + \mathbf{N}_{\psi}^{n+1} - S \left(\mathbf{U}^{n+1} - \tilde{\mathbf{U}}^{n+1} \right) = \mathbf{0}, \tag{7}
$$

$$
-D\widetilde{\mathbf{U}}^{n+1} + \gamma_k \delta t D M_{\mathbf{u}}^{-1} \mathbf{N}_{\mathbf{u}}^{n+1} + \gamma_k \delta t D M_{\mathbf{u}}^{-1} G \left(P^{n+1} - \widehat{\mathbf{P}}_{k'-1}^{n+1} \right)
$$

$$
-\gamma_k \delta t D M_{\mathbf{u}}^{-1} D_{\psi}^{\mathbf{E}} \left(\mathbf{\Psi}^{n+1} - \widehat{\mathbf{\Psi}}_{k'-1}^{n+1} \right) = \mathbf{0}, \tag{8}
$$

 $\tilde{\textbf{U}}^{n+1}$ and $\tilde{\textbf{W}}^{n+1}$ are the auxiliary variables that later must be corrected. $\hat{\mathbf{g}}_{k^{\prime}-1}^{n+1}$ are the $\mathsf{extrapolated}$ variables, where the order of the extrapolation is $k'-1$ at time t^{n+1} .

 $(4) + (5) \longrightarrow (1)$ Momentum $(6) + (7) \longrightarrow (3)$ Constitutive $(8) + \gamma_k \delta t D$ (5) \longrightarrow (2)Continuity

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

Fractional step. Algorithm (I). Intermediate steps

1 Compute the intermediate velocity using extrapolated values of the pressure and ψ variable.

$$
(4) \ M_{\boldsymbol{u}} \frac{\delta_k}{\delta t} \tilde{\mathbf{U}}^{n+1} + K_{\boldsymbol{u}} \left(\tilde{\mathbf{U}}^{n+1} \right) \tilde{\mathbf{U}}^{n+1} + G \hat{\mathbf{P}}_{k'-1}^{n+1} - D_{\boldsymbol{\psi}}^{\mathbf{E}} \hat{\mathbf{\Psi}}_{k'-1}^{n+1} = \mathbf{F}_{\boldsymbol{u}}^{\mathbf{E}} \longrightarrow \tilde{\mathbf{U}}^{n+1}
$$

2 Compute the intermediate ψ using the intermediate velocity computed in the previous step.

$$
(6) \ M_{\psi}^{\mathrm{E}} \frac{\delta_{k}}{\delta t} \tilde{\Psi}^{n+1} + K_{\psi}^{\mathrm{E}} \left(\tilde{\mathrm{U}}^{n+1}\right) \tilde{\Psi}^{n+1} - S \tilde{\mathrm{U}}^{n+1} = \mathbf{F}_{\psi}^{\mathrm{E}} \longrightarrow \tilde{\Psi}^{n+1}
$$

3 Compute the intermediate pressure using both intermediate velocities and ψ computed in the two previous steps:

$$
(8) - D\tilde{U}^{n+1} + \gamma_k \delta t D M_{\mathbf{u}}^{-1} \mathbf{N}_{\mathbf{u}}^{n+1} + \gamma_k \delta t D M_{\mathbf{u}}^{-1} G \left(\tilde{P}^{n+1} - \hat{P}_{k'-1}^{n+1} \right) - \gamma_k \delta t D M_{\mathbf{u}}^{-1} D_{\psi}^{\mathrm{E}} \left(\tilde{\Psi}^{n+1} - \hat{\Psi}_{k'-1}^{n+1} \right) = \mathbf{0} \longrightarrow \tilde{P}^{n+1}
$$

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

Fractional step. Algorithm (II). Correction steps

4 Compute the velocity correction:

$$
(5) \ M_{\boldsymbol{u}} \frac{\delta_{k}}{\delta t} \left(\mathbf{U}^{n+1} - \tilde{\mathbf{U}}^{n+1} \right) + \mathbf{N}_{\boldsymbol{u}}^{n+1} + G \left(\tilde{\mathbf{P}}^{n+1} - \hat{\mathbf{P}}_{k'-1}^{n+1} \right) - D_{\boldsymbol{\psi}}^{\mathbf{E}} \left(\tilde{\mathbf{U}}^{n+1} - \hat{\mathbf{V}}_{k'-1}^{n+1} \right) = \mathbf{0} \longrightarrow \mathbf{U}^{n+1}
$$

5 Compute the ψ **correction:**

$$
(7) \ M_{\psi}^{{\rm E}}\frac{\delta_k}{\delta t}\left(\boldsymbol{\Psi}^{n+1}-\tilde{\boldsymbol{\Psi}}^{n+1}\right)+N_{\psi}^{n+1}-S\left(\boldsymbol{\mathrm{U}}^{n+1}-\tilde{\boldsymbol{\mathrm{U}}}^{n+1}\right)=\boldsymbol{0}\longrightarrow\boldsymbol{\Psi}^{n+1}
$$

6 Pressure correction: $\mathrm{P^{n+1}} = \mathrm{\tilde{P}^{n+1}} \longrightarrow \mathrm{P^{n+1}}$

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

1 [Introduction](#page-2-0)

2 [Stabilization based on time-dependent subgrid-scales](#page-6-0)

3 [Fractional step scheme for the LCR](#page-11-0)

4 [Numerical results](#page-16-0)

Flow over a cylinder. Main features.

- The computational domain is a rectangle of length 16 and width 8, with a unitary cylinder centered vertically.
- \blacksquare The boundary conditions of the problem are:
	- \circ The inflow velocity is $u_x = 1$ and $u_y = 0$.
	- The top and the bottom boundaries are considered fictitious walls.
	- For the outflow boundary the velocity is free in both components.
	- Non-slip conditions are set in the wall of the cylinder .
- **The viscoelastic fluid parameters are:** $\rho = 1$, $\beta = 0.5$ and $\eta_0 = 0.01$.
- **■** Re=100, We $\in \{0.125, 0.165, 0.25, 0.5\}.$
- Spatial discretization: Coarse mesh. $h_{min} = 0.01$ and $h_{max} = 0.4$.
- Temporal discretization: $\delta t \in \{0.05, 0.025, 3.125 \times 10^{-3}, 1.562 \times 10^{-3}\}$

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

Flow over a cylinder. Monolithic scheme

Comparing stabilizations

Table: Solved and failed cases $We = 0.125$. $\alpha_{1,\mathsf{min}} \approx 1.156 \times 10^{-3}$.

Comparing formulations

Table: Solved and failed cases for S-OSS formulations, dynamic and quasi-static, $\delta t = 0.1$.

Conclusions

The most unstable stabilization is the quasi-static $+$ OSS stabilization.

Dynamic formulations are more efficient avoiding elastic **instabilities**

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

Lid-driven cavity flow problem. Main features

- [Introduction](#page-2-0)
- Stabilization [based on time](#page-6-0)dependent subgrid-scales
- [Fractional step](#page-11-0) scheme for the LCR
- [Numerical](#page-16-0) results
- [Conclusions](#page-22-0)
- The computational domain: fluid confined in the unit square.
- The boundary conditions are:
	- On the top boundary, velocity is prescribed in the x direction.
	- At the walls, velocity is set to zero in both components.
- \blacksquare We = 1.0 and Re = 0.
- Spatial discretization: a structured mesh composed of 10000 bilinear Q1 elements.
- Temporal discretization: $\delta t = 0.0025$

Lid-driven cavity flow problem. Case Re=0

1.75 Present Study Fattal & Kupferman (2005) 0.9 1.5 0.8 1.25 0.7 $\psi_{xy}(1/2,y)$ 0.6 0.75 ≥ 0.5 0.5 0.4 0.25 0.3 θ 0.2 -0.25 Present Study 0.1 Fattal & Kupferman (2005) -0.5 θ Ω 0.2 0.4 0.6 0.8 -2 Ω $\overline{2}$ ĥ. $\bar{8}$ 10 $\psi_{xx}(1/2, y)$ \boldsymbol{x}

Table: Comparison between different formulations, $\text{We} = 1.0$, $\delta t = 0.0025$. The time step at which convergence fails is indicated. 21/ 27

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

Lid-driven cavity flow problem. Monolithic vs Fractional schemes

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

Table: Comparison between different formulations and schemes with $\text{We} = 0.5$, Re $= 0$, $\delta t = 0.0025$ considering a mesh of 35×35 . The time step at which convergence fails is indicated in each case.

Table: Ratio of CPU times. Computational mesh 100×100 .

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

1 [Introduction](#page-2-0)

2 [Stabilization based on time-dependent subgrid-scales](#page-6-0)

3 [Fractional step scheme for the LCR](#page-11-0)

4 [Numerical results](#page-16-0)

Conclusions

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

- **Dynamic sub-scales** allow solving problems where two different sources of instability can appear simultaneously.
- **Combination of LCR and dynamic subscales** in term-by-term stabilization is capable of solving problems with higher elasticity than other options.
- **Fractional step methods** for the LCR have been designed using a purely algebraic approach in order to reduce the computational cost.

Related publications

[Introduction](#page-2-0)

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

- 1 Moreno L., Codina R., Baiges J. & Castillo E. (2019). Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation. Computer Methods in Applied Mechanics and Engineering, 354, 706-731.
- 2 Moreno L., Codina R. & Baiges J. (2020). Solution of transient viscoelastic flow problems approximated by a term-by-term VMS stabilized finite element formulation using time-dependent subgrid-scales. Computer Methods in Applied Mechanics and Engineering, 367, 113074.
- 3 Codina, R., & Moreno, L. Stability Analysis of time dependent linearized viscoelastic flow problems using a stabilized finite element formulation in space. ESAIM. Mathematical Modelling and Numerical Analysis, Submitted.
- 4 Castillo, E., Moreno, L., Baiges, J., & Codina, R. (2021). Stabilised Variational Multi-Scale Finite Element Formulations for Viscoelastic Fluids. Archives of Computational Methods in Engineering, 1-33.

References

[Introduction](#page-2-0)

- **Stabilization** [based on time](#page-6-0)dependent subgrid-scales
- [Fractional step](#page-11-0) scheme for the LCR
- [Numerical](#page-16-0) results

- **T.J.R. Hughes, G.R. Feijóo, L. Mazzei, and J.B. Quincy. The variational multiscale method:** a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.
- Hulsen M. A., Fattal R. & R. Kupferman. (2005) Flow of viscoelastic fluids past a cylinder at high weissenberg number: stabilized simulations using matrix logarithms. Journal of Non-Newtonian Fluid Mechanics, 127(1):27–39.
- R. Fattal and R. Kupferman. Constitutive laws for the matrix-logarithm of the conformation tensor. Journal of Non-Newtonian Fluid Mechanics, 123(2-3):281–285, 2004.
- Castillo, E., Codina, R. (2015). First, second and third order fractional step methods for the three-field viscoelastic flow problem. Journal of Computational Physics, 296. https://doi.org/10.1016/j.jcp.2015.04.027
- Codina, R., Principe, J., Guasch, O., Badia, S. (2007). Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Computer Methods in Applied Mechanics and Engineering, 196(21–24). https://doi.org/10.1016/j.cma.2007.01.002
- P. B. Bochev, M. D. Gunzburger, and J. N. Shadid. (2004) On inf–sup stabilized finite element methods for transient problems. Computer Methods in Applied Mechanics and Engineering 193.15-16: 1471-1489.

Stabilization [based on time](#page-6-0)dependent subgrid-scales

[Fractional step](#page-11-0) scheme for the LCR

[Numerical](#page-16-0) results

[Conclusions](#page-22-0)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

November 2021

Thank you for your attention!!

Laura Moreno Martínez