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What is a viscoelastic fluid?

Viscoelastic fluids are a specific type of non-Newtonian fluids that exhibit a
combination of elastic and viscous effects.

- Visco: friction, irreversibility, loss of memory.
- Elastic: recoil, internal energy storage.

This combination of properties is
explained by a complex internal
structure.

They have memory. The
state-of-stress depends on the flow
history.

wikipedia
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Modelling of polymeric fluid flows

Momentum equation:

ρ
∂u
∂t

+ ρu · ∇u −∇ · T+∇p = f

Continuity equation:

∇ · u = 0

Constitutive equation:

1

2ηp
(1 + h(σ)) · σ −∇su +

λ

2ηp

(
∂σ

∂t
+ u · ∇σ − σ · ∇u + (∇u)T · σ

)
= 0

T = 2ηs(∇su) + σ

Polymeric fluids

T = 2η(∇su)

Newtonian viscous fluids

h(σ) = 0

Oldroyd-B

h(σ) =
ελ

ηp
σ

Giesekus

h(σ) =
ελ

ηp
tr(σ)

Phan-Thien-Tanner

Deviatoric extra stress tensor
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The Weissenberg number and HWNP

We is small: viscous effect
relevant, elastic behavior small.

If We > 1: problems become
extremely complicated.

Weissenberg number

We =
λU

L

Problem: The High Weissenberg Number Problem (HWNP)

”Solution”: the Log-Conformation Reformulation (LCR)
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Motivation and goal

Classical residual-based stabilized methods may experience difficulties when the
time step is small relative to the spatial grid size.

Bochev et al. demonstrate that δt > Ch2 is a sufficient condition to avoid
instabilities.

For anisotropic space-time discretizations, this inequality is not necessarily
satisfied.

Goal

1 Design of new stabilization techniques.

2 Design fractional step schemes in order to reduce the expensive
computational cost.
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Spatial and temporal discretizations

Spatial discretization

Galerkin finite element approximation. It consists in finding Uh : (0,T ) −→ X h,

(G(Uh),V h)︸ ︷︷ ︸
Temporal terms

+B(uh;Uh,V h)︸ ︷︷ ︸
Semi-linear form

= L(V h),

for all V h ∈ X h.

Time discretization

Monolithic and fractional step time discretization. BDF1 and BDF2 schemes
have been employed in this work.
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Stabilization technique: Variational Multi-Scale (VMS) Methods

Objective: to approximate the components of the continuous problem solution
that cannot be resolved by the finite element mesh.

Unknown splitting: U = Uh︸︷︷︸
∈Xh

+ Ũ︸︷︷︸
∈X̃

and X = Xh
⊕

X̃ .

(G(Uh),V h) + B(uh;Uh,V h)︸ ︷︷ ︸
Galerkin terms

+ ⟨G(Ũ),V h⟩+
∑
K

⟨Ũ , L∗(uh;V h)︸ ︷︷ ︸
adjoint operator of L

⟩K

︸ ︷︷ ︸
Stabilization terms

= L(V h)

∂Ũ
∂t

+α−1Ũ = P̃[F− G(Uh)− L(uh;Uh)]

Sub-grid scale

P̃ is the L2 − projection onto the space of sub-grid scales,

α is a matrix computed within each element,

L is the operator associated with the problem.
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Dynamic subscales for residual-based stabilized formulation

S1(ûh;Uh,V h) =
∑
K

⟨ũ,−∇ · χh + 2βη0∇ · (∇svh) + ρûh · ∇vh +∇qh
〉
K

ρ
∂ũ
∂t

+ α−1
1 ũ = P̃(

Momentum eq. residual︷ ︸︸ ︷
F 1 − ρ

∂uh

∂t
− L1(uh;Uh)),

ũn+1 =

(
ρ
1

δt
+

1

αn+1
1

)−1

︸ ︷︷ ︸
α1dyn

(
ρ
1

δt
ũn − ρP̃(F 1 − ρ

∂uh

∂t
− L1(uh;Uh))

)

Discretization using a BDF1 scheme

Galerkin terms︷ ︸︸ ︷
G(Uh,V h) + B(uh ;Uh,V h)+

Stabilization terms︷ ︸︸ ︷
(G(Ũ),V h) + S1(uh ;Uh,V h) + S2(Uh,V h) + S3(uh ;Uh,V h) = L(V h)︸ ︷︷ ︸

Gal. term
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Stabilized formulation: Residual-based vs Split OSS

S1(ûh;Uh,V h) =
∑
K

α1dyn

〈
ρ
1

δt
ũn + P̃

[
ρ
∂uh

∂t

ũ1︷ ︸︸ ︷
− ηp
λ0

∇ · (exp(ψh)) −2ηs∇ · (∇suh)

ũ2︷ ︸︸ ︷
+ρûh · ∇uh ,

ũ3︷ ︸︸ ︷
+∇ph

]
−∇ · χh +2ηs∇ · (∇sv h) +ρûh · ∇v h +∇qh

〉
K

1 The residual-based stabilization contemplates all terms.

2 Split OSS stabilization: neglect the cross local inner-product terms as well as some
other terms that do not contribute to stability. In that case P̃ = P⊥

h .

Galerkin terms︷ ︸︸ ︷
(G(Uh),V h) + B(uh;Uh,V h)+

Stabilization terms︷ ︸︸ ︷
(G(Ũ),V h) + S1(uh;Uh,V h) + S2(Uh,V h) + S3(uh;Uh,V h) = L(V h)︸ ︷︷ ︸

Gal. term
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Fractional step. Algebraic system

Mu
δk
δt

Un+1 + Ku
(
Un+1

)
Un+1 + GPn+1 − DE

ψΨ
n+1 = FE

u , (1)

DUn+1 = 0, (2)

ME
ψ

δk
δt

Ψn+1 + KE
ψ

(
Un+1

)
Ψn+1 − SUn+1 = FE

ψ. (3)

A11 A12 A13

A21 A22 0
A31 0 0

Un+1

Ψn+1

Pn+1

 =

Fn+1
1

Fn+1
2

Fn+1
3


A11 =

1

γkδt
Mu + Ku

(
Un+1

)
, A12 = −DE

ψ ,

A21 = −S , A22 =
1

γkδK
ME
ψ + KE

ψ(U)n+1,

A13 = G , A31 = D,

F1 = FE
u +

1

δtγk

(∑k−1
i=0 φi

kU
n−i

)
, F3 = 0,

F2 = FE
ψ +

1

δtγk

(∑k−1
i=0 φi

kΨ
n−i

)
.

Momentum

Continuity

Constitutive
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Fractional step. Equivalent form

Mu
δk
δt

Ũ
n+1

+ Ku

(
Ũ

n+1
)
Ũ

n+1
+ G P̂n+1

k′−1 − DE
ψΨ̂

n+1

k′−1 = FE
u , (4)

Mu
δk
δt

(
Un+1 − Ũ

n+1
)
+ Nu + G

(
Pn+1 − P̂n+1

k′−1

)
− DE

ψ

(
Ψn+1 − Ψ̂

n+1

k′−1

)
= 0, (5)

ME
ψ

δk
δt

Ψ̃
n+1

+ KE
ψ

(
Ũ

n+1
)
Ψ̃

n+1 − SŨ
n+1

= FE
ψ, (6)

ME
ψ

δk
δt

(
Ψn+1 − Ψ̃

n+1
)
+Nn+1

ψ − S
(
Un+1 − Ũ

n+1
)
= 0, (7)

−DŨ
n+1

+ γkδtDM
−1
u Nn+1

u + γkδtDM
−1
u G

(
Pn+1 − P̂n+1

k′−1

)
−γkδtDM

−1
u DE

ψ

(
Ψn+1 − Ψ̂

n+1

k′−1

)
= 0, (8)

Ũ
n+1

and Ψ̃
n+1

are the auxiliary variables
that later must be corrected.
ĝn+1
k′−1 are the extrapolated variables, where
the order of the extrapolation is k ′ − 1 at
time tn+1.

(4) + (5) −→ (1)Momentum
(6) + (7) −→ (3)Constitutive
(8) + γkδtD (5) −→ (2)Continuity
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Fractional step. Algorithm (I). Intermediate steps
1 Compute the intermediate velocity using extrapolated values of the

pressure and ψ variable.

(4) Mu
δk
δt

Ũ
n+1

+ Ku

(
Ũ

n+1
)
Ũ

n+1
+ G P̂n+1

k ′−1 − DE
ψΨ̂

n+1
k ′−1 = FE

u −→ Ũ
n+1

2 Compute the intermediate ψ using the intermediate velocity computed in
the previous step.

(6) ME
ψ

δk
δt

Ψ̃
n+1

+ KE
ψ

(
Ũ

n+1
)
Ψ̃

n+1 − SŨ
n+1

= FE
ψ −→ Ψ̃

n+1

3 Compute the intermediate pressure using both intermediate velocities and
ψ computed in the two previous steps:

(8) − DŨ
n+1

+ γkδtDM
−1
u Nn+1

u + γkδtDM
−1
u G

(
P̃n+1 − P̂n+1

k ′−1

)
−γkδtDM

−1
u DE

ψ

(
Ψ̃

n+1 − Ψ̂
n+1
k ′−1

)
= 0 −→ P̃

n+1
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Fractional step. Algorithm (II). Correction steps

4 Compute the velocity correction:

(5) Mu
δk
δt

(
Un+1 − Ũ

n+1
)
+Nn+1

u + G
(
P̃
n+1 − P̂n+1

k ′−1

)
−DE

ψ

(
Ψ̃

n+1 − Ψ̂
n+1
k ′−1

)
= 0 −→ Un+1

5 Compute the ψ correction:

(7) ME
ψ

δk
δt

(
Ψn+1 − Ψ̃

n+1
)
+Nn+1

ψ − S
(
Un+1 − Ũ

n+1
)
= 0 −→ Ψn+1

6 Pressure correction: Pn+1 = P̃n+1 −→ Pn+1
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Flow over a cylinder. Main features.

The computational domain is a rectangle of length 16 and width 8, with a unitary cylinder centered
vertically.

The boundary conditions of the problem are:

◦ The inflow velocity is ux = 1 and uy = 0.
◦ The top and the bottom boundaries are considered fictitious walls.
◦ For the outflow boundary the velocity is free in both components.
◦ Non-slip conditions are set in the wall of the cylinder .

The viscoelastic fluid parameters are: ρ = 1, β = 0.5 and η0 = 0.01.

Re=100, We ∈ {0.125, 0.165, 0.25, 0.5}.
Spatial discretization: Coarse mesh. hmin = 0.01 and hmax = 0.4.

Temporal discretization: δt ∈ {0.05, 0.025, 3.125× 10−3, 1.562× 10−3}
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Flow over a cylinder. Monolithic scheme
Comparing stabilizations

P1 elements Time step (δt)
Method 0.050 0.0250 3.125× 10−3 1.562× 10−3

Static-OSS Solved Failed - -
Dyn-OSS Solved Solved Solved Solved
Static-SOSS Solved Solved Solved Failed
Dyn-SOSS Solved Solved Solved Solved

Table: Solved and failed cases We = 0.125,
α1,min ≈ 1.156× 10−3.

Comparing formulations

Weissenberg (We)
Formulation 0.125 0.165 0.25 0.5

Std-Static Solved Failed - -
Std-Dyn Solved Solved Solved Failed
LCR-Static Solved Solved Failed -
LCR-Dyn Solved Solved Solved Solved

Table: Solved and failed cases for S-OSS formulations, dynamic
and quasi-static, δt = 0.1.

Conclusions

The most
unstable
stabilization is
the
quasi-static +
OSS
stabilization.

Dynamic
formulations
are more
efficient
avoiding elastic
instabilities.
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Lid-driven cavity flow problem. Main features

The computational domain: fluid confined in the
unit square.

The boundary conditions are:

◦ On the top boundary, velocity is prescribed
in the x direction.

◦ At the walls, velocity is set to zero in both
components.

We = 1.0 and Re = 0.

Spatial discretization: a structured mesh
composed of 10000 bilinear Q1 elements.

Temporal discretization: δt = 0.0025
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Lid-driven cavity flow problem. Case Re=0

Present Study

Fattal & Kupferman (2005)

Present Study

Fattal & Kupferman (2005)

Stabilization S-OSS
Formulation Quasi-static Dynamic

Standard Failed - time step 265 Failed - time step 1316
Logarithmic Failed - time step 340 Solved

Table: Comparison between different formulations, We = 1.0, δt = 0.0025. The time step at which
convergence fails is indicated.

21/ 27



Introduction

Stabilization
based on time-
dependent
subgrid-scales

Fractional step
scheme for the
LCR

Numerical
results

Conclusions

Lid-driven cavity flow problem. Monolithic vs Fractional schemes

Stabilization S-OSS
Scheme Formulation Quasi-static Dynamic

Monolithic Standard Failed - time step 265 Failed - time step 1316
Monolithic LCR Failed - time step 340 Solved
Fractional Step Standard Failed - time step 692 Failed - time step 1781
Fractional Step LCR Failed - time step 593 Solved

Table: Comparison between different formulations and schemes with We = 0.5, Re = 0, δt = 0.0025
considering a mesh of 35×35. The time step at which convergence fails is indicated in each case.

Case Total time ratio Solver time ratio

We=0.5, Re=0.0 0.48 0.10

We=1.0, Re=100 0.49 0.07

Table: Ratio of CPU times. Computational mesh 100×100.
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Conclusions

Dynamic sub-scales allow solving problems where two different sources of
instability can appear simultaneously.

Combination of LCR and dynamic subscales in term-by-term stabilization
is capable of solving problems with higher elasticity than other options.

Fractional step methods for the LCR have been designed using a purely
algebraic approach in order to reduce the computational cost.
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