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Abstract

Some finite element stabilized formulations for transient viscoelastic flow problems are presented
in this paper. These are based on the Variational Multiscale (VMS) method, following the ap-
proach introduced in Castillo and Codina, Comput. Meth. Appl. Mech. Eng., vol. 349, pp.
701 - 721 (2019), for the Navier-Stokes problem, the main feature of the method being that the
time derivative term in the subgrid-scales is not neglected. The main advantage of considering
time-dependent sub-grid scales is that stable solutions for anisotropic space-time discretizations
are obtained; however other benefits related with elastic problems are found along this study. Ad-
ditionally, a split term-by-term stabilization method is discussed and redesigned, where only the
momentum equation is approached using a term-by-term methodology, and which turns out to be
much more efficient than other residual-based formulations. The proposed methods are designed
for the standard and logarithmic formulations in order to deal with high Weissemberg number
problems in addition to anisotropic space-time discretizations, ensuring stability in all cases. The
proposed formulations are validated in several benchmarks such as the flow over a cylinder problem
and the lid-driven cavity problem, obtaining stable and accurate results. A comparison between
formulations and stabilization techniques is done to demostrate the efficiency of time-dependent
sub-grid scales and the term-by-term methodologies.

Keywords: Stabilized finite element methods, Variational Multiscale, Dynamic sub-grid scales,
Term-by-term stabilization, Viscoelastic fluids, Log-conformation, Oldroyd-B fluid.

1 Introduction

Recent studies indicate that classical residual-based stabilized methods for unsteady in-
compressible flows may experience difficulties when the time step is small relative to the
spatial grid size. For example, Bochev et al. [1] argue that spatial stabilization in con-
junction with finite differencing in time implies destabilizing terms and that δt > Ch2 is a
sufficient condition to avoid instabilities (where δt is the time step size, C a positive con-
stant and h the spatial grid size), although they are not conclusive about the necessity of
this condition. Nevertheless, for anisotropic space-time discretizations (partitions in which
h and δt are independently refined), this inequality is not necessarily satisfied [2], and in
fact complications in residual-based stabilized methods are reported. These problems can
happen, for instance, when small time steps result from the necessity of accuracy to solve
transient problems due to the presence of non-linear terms in the differential equations, a
very common issue in viscoelastic flow formulations. The results presented by Bochev et
al. [3] explain why fully discrete formulations experience problems when δt → 0, putting
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the focus on the coercivity of the stabilized variational equation. These instabilities are
encountered particularly in early stages of the time integration.

In particular, the approximations used in Variational Multiscale (VMS) methods [4]
usually neglect the time derivative of the sub-grid scales, resulting in the inequality
δt > Ch2 being required to obtain stable solutions. Consequently, anisotropic space-
time discretizations cannot garantee stability, as it is argued by Codina et al. [5]. The
sub-grid scales obtained neglecting the time derivative are denoted in [6] with the term
quasi-static. In this sense, the work [5] results crucial, because the authors explore all
the properties of the discrete formulation that is obtained when the temporal dependency
of subgrid scales is accounted for. This idea, which is widely developed in the quoted
paper, avoids some inconsistencies, allowing to solve turbulent flows accurately [7]. In ad-
dition, the computational effort is reduced significantly due to the reduction of non-linear
iterations needed to solve at each time step.

In a more recent publication [8], the authors presents the benefits of the tracking of sub-
grid scales in time for the Navier-Stokes incompressible problem using various stabilized
methods, including a residual-based VMS method and a method whose structure is split
term-by-term, where the use of orthogonal projections results in an optimal order non-
consistent method. This work demostrates that, considering dynamic sub-grid scales, the
anisotropic time-space discretization is completely stable, i.e. the inequality δt > Ch2 does
not need to be satisfied. By following these ideas, the present work pursues to expand
transient subgrid-scale methods to the viscoelastic flow problem.

The computation of viscoelastic flows leads to its own difficulties, especially when elas-
ticity becomes dominant, i.e., when the dimensionless number known as the Weissemberg
number is high. In these cases, the numerical instability is caused by the lack of balance
between deformation rate and convection, as identified by Fattal and Kupferman [9]. The
source of the so called High Weissemberg Number Problem (HWNP) is associated with the
loss of positive-definiteness of the conformation tensor [4, 10], and the existence of large
stress gradients and regions with high deformation rate that cause the numerical meth-
ods to fail. A new formulation was proposed by Fattal and Kupferman [10, 9] in order
to deal with these shortcomings: the so called Logarihmic Conformation Representation.
This formulation arises from the traditional equations of viscoelastic fluids together with
a change of variables, with the objective of eliminating instabilities, allowing to extend the
range of Weissemberg numbers which can be computed. In this sense, in [11] the authors
apply this reformulation using a stabilized formulation based on the VMS method, which
will be the basis of some of the stabilized formulations employed here.

To sum up, the purpose of the present paper is the design of stabilization techniques
that allow to compute time-dependent viscoelastic flow problems with high elasticity (or
Weissemberg number) and with an anisotropic space-time discretization. To achieve it,
the design of a term-by-term VMS method with transient in time subgrid scales is pre-
sented. Also, along this paper both standard and logarithmic formulations are considered,
compared and validated in some numerical examples.

The structure of the work is as follows: Section 2 explains the main features of the
standard and logarithmic formulations in the strong and variational form for an Oldroyd-B
fluid. At the end of this Section, the Galerkin finite element (FE) disretization and the
time discretization are described. Once the main equations are set, Section 3 exposes the
stabilized FE approach based on the VMS method considering the dynamic sub-grid scales
through two different forms: the residual-based stabilization and the split term-by-term
stabilization, where the particularities of the formulation design are discussed numerically.
The numerical results are exposed in Section 4, where three different benchmarks are
computed and analysed to validate the formulations. Finally, conclusions are collected in
the last section of the work, Section 5.
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2 Viscoelastic flow problem

2.1 Boundary value problem

Let us start by presenting the standard equations associated to the viscoelastic flow prob-
lem in incompressible and isothermic conditions. Let us consider a viscoelastic fluid mov-
ing in a domain Ω of Rd (d=2 or 3), whose boundary is ∂Ω , during the time interval
[0, tf ]. The governing equations are the conservation of momentum and mass which can
be expressed as

ρ
∂u

∂t
+ ρu · ∇u−∇ ·T +∇p = f in Ω, t ∈]0, tf [, (2.1)

∇ · u = 0 in Ω, t ∈]0, tf [, (2.2)

where ρ denotes the constant density, p : Ω×]0, tf [→ R is the pressure field, u : Ω×]0, tf [→
Rd is the velocity field, f : Ω×]0, tf [→ Rd is the force field and T : Ω×]0, tf [→ Rd⊗Rd is the
deviatoric stress tensor. In general, T is defined in terms of a viscous and a viscoelastic
contribution as T = 2ηe∇su + σ, where ∇su is the symmetrical part of the velocity
gradient and σ is the viscoelastic or elastic stress tensor. Note that we will write the
effective (or solvent) viscosity ηe and the polymeric viscosity ηp as a function of the total
viscosity η0, therefore, an additional parameter β ∈ [0, 1] is introduced to define ηe = βη0
and ηp = (1− β)η0.

To complete the system which models the viscoelastic fluid, the constitutive equation
for the viscoelastic stress tensor is defined. We consider the Oldroyd-B model, which reads:

1

2ηp
σ −∇su+

λ

2ηp

(
∂σ

∂t
+ u · ∇σ − σ · ∇u− (∇uT ) · σ

)
= 0, in Ω, t ∈]0, tf [, (2.3)

where λ is the relaxation time.
From this point, in order to distinguish operators between standard and logarithmic

formulations, we employ the subscripts “std” and “log”. We define operators Lstd and
Dstd, useful in the next subsections. Let us define U = [u, p,σ], F std = [f , 0,0],

Lstd(û;U) :=


−∇ · σ − 2ηe∇ · (∇su) + ρû · ∇u+∇p

∇ · u
1

2ηp
σ −∇su+

λ

2ηp

(
û · ∇σ − σ · ∇û− (∇û)T · σ

)
 (2.4)

and

Dstd (U) :=


ρ
∂u

∂t
0

λ

2ηp

(
∂σ

∂t

)
 .

As a consequence, equations (2.1), (2.2) and (2.3) can be rewritten, considering Dt =
Dstd, L = Lstd and F = F std, as:

Dt (U) + L(u;U) = F . (2.5)

Finally, we need to define the boundary conditions that close the problem. For sim-
plicity, u = 0 on ∂Ω is considered. In the case of boundary conditions for the elastic
stresses, in principle they do not need be prescribed, but enforcing them allows to save
computational time sometimes. On the other hand, they can be fixed only on the inflow
boundary, Γin = {x ∈ ∂Ω | (u · n)(x) < 0} , where n is the outward unit normal vector to
∂Ω. The problem is completed with the initial conditions for velocity and elastic stress
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(u = u0 and σ = σ0 ) at time t = 0, being u0 and σ0 functions defined in the whole
domain Ω.

We will now briefly describe the viscoelastic equations when the logarithmic reformula-
tion is considered. Note that the complete development employed is extensively explained
in [11]. The reformulation is derived basically from a change of variables, where the stress

tensor is replaced by σ =
ηp
λ0

(τ − I), and in turn, the conformation tensor τ is written

as τ = exp(ψ) in (2.1), (2.2) and (2.3). Particularly, λ0 is linearly dependent with λ
and is defined as λ0 = max {kλ, λ0,min}, being k a constant and λ0,min a given threshold.
Therefore, the new equations of the logarithmic conformation formulation are expressed
as follows:

ρ
∂u

∂t
− ηp
λ0
∇ · exp(ψ)− 2ηe∇ · (∇su) + ρu · ∇u+∇p = f , (2.6)

∇ · u = 0, (2.7)

1

2λ0
(exp(ψ)− I)−∇su

+
λ

2λ0

(
∂ exp(ψ)

∂t
+ u · ∇ exp (ψ)− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su

)
= 0, (2.8)

where the unknowns are the velocity, the pressure, and tensor ψ that depends directly on
the viscoelastic stress tensor σ.

Analogously to what was done for the standard formulation, calling U = [u, p,ψ],
F log = [f , 0, 1

2λ0
I],

Llog(û;U) :=


− ηp
λ0
∇ · (exp(ψ))− 2ηe∇ · (∇su) + ρû · ∇u+∇p

∇ · u
1

2λ0
exp(ψ)−∇su+

λ

2λ0
(û · ∇ (exp(ψ))

− exp(ψ) · ∇û− (∇û)T · exp(ψ) + 2∇su
)

 (2.9)

and

Dlog(U) :=


ρ
∂u

∂t
0

λ

2λ0

∂ exp(ψ)

∂t

 ,

equations (2.6)-(2.8) can be expressed as equation (2.5), where Dt = Dlog, L = Llog
and F = F log. Similar considerations can be done for this formulation referring to the
boundary conditions. In this case tensor ψ is not prescribed, similarly to what is done
with the elastic stresses σ in the standard formulation.

2.2 Variational form

Let us introduce some specific notation in order to define the weak form of the viscoelastic
problem:

• The space of square integrable functions in a domain ω is denoted by L2(ω), and the
space of functions whose distributional derivatives of order up to m ≥ 0 (integer)
belong to L2(ω) is denoted by Hm(ω).

• The space H1
0 (ω) comprises functions in H1(ω) vanishing on ∂ω.

• The topological dual of H1
0 (Ω) is denoted by H−1(Ω), the duality pairing being 〈·, ·〉.
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• The L2 inner product in ω (for scalars, vectors and tensors) is denoted by (·, ·)ω and
the integral over ω of the product of two general functions is written as 〈·, ·〉ω, the
subscript being omitted when ω = Ω.

• The norm in a space X is denoted by ‖ · ‖X , except in the case X = L2(Ω), where
the subscript is omitted.

Using this notation, the stress, velocity and pressure spaces for the continuous standard
problem can be taken as Υ = H1(Ω)d×dsym (symmetric second order tensor with components

in H1(Ω)), V 0 = H1
0 (Ω)d and Q = L2(Ω)/R, respectively, for each fixed time t (the

regularity for the stress space could be relaxed).
The weak form of the problem consists in finding U = [u, p,σ] :]0, tf [−→ X := V 0 ×

Q×Υ, such that the initial conditions are satisfied and:(
ρ
∂u

∂t
,v

)
+ (σ,∇sv) + 2(ηe∇su,∇sv) + 〈ρu · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉,

(q,∇ · u) = 0,

1

2ηp
(σ,χ)− (∇su,χ) +

λ

2ηp

(
∂σ

∂t
+ u · ∇σ − σ · ∇u− (∇u)T · σ,χ

)
= 0,

for all V = [v, q,χ] ∈ X , where it is assumed that f is such that 〈f ,v〉 is well defined. In
compact form, the problem can be written as:

Gstd(U ,V ) +Bstd(u;U ,V ) = Lstd(V ), (2.10)

for all V ∈ X , where

Gstd(U ,V ) =

(
ρ
∂u

∂t
,v

)
+

λ

2ηp

(
∂σ

∂t
,χ

)
, (2.11)

Bstd(û;U ,V ) = 2ηe(∇su,v) + 〈ρû · ∇u,v〉+ (σ,∇sv)

− (p,∇ · v) + (q,∇ · u) +
1

2ηp
(σ,χ)− (∇su,χ)

+
λ

2ηp

(
û · ∇σ − σ · ∇û− (∇û)T · σ,χ

)
, (2.12)

Lstd(V ) = 〈f ,v〉. (2.13)

Considering now the logarithmic reformulation of the viscoelastic flow problem, the
spaces for the velocity and pressure for the continuous problems are the ones defined
above for the standard formulation, and now, the space for tensor ψ is denoted by Ῡ for
each fixed time t, where an appropiate regularity is assumed.

The weak form of the problem consists in finding U = [u, p,ψ] :]0, tf [−→ X̄ := V 0 ×
Q× Ῡ, such that the initial conditions are satisfied and:(

ρ
∂u

∂t
,v

)
+
ηp
λ0

(exp(ψ),∇sv) + 2(ηe∇su,∇sv)

+〈ρu · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉, (2.14)

(q,∇ · u) = 0, (2.15)

1

2λ0
(exp(ψ),χ)− (∇su,χ) +

λ

2λ0

(
∂ exp(ψ)

∂t
,χ

)
+

λ

2λ0
(u · ∇ exp(ψ),χ)

+
λ

2λ0

(
− exp(ψ) · ∇u− (∇u)T · exp(ψ) + 2∇su,χ

)
=

1

2λ0
〈I,χ〉, (2.16)
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for all V = [v, q,χ] ∈ X . Again taking into account the new definition of U for this
formulation, the problem can be written as:

Glog(U ,V ) +Blog(u;U ,V ) = Llog(V ), (2.17)

where each term is defined as

Glog(U ,V ) =

(
ρ
∂u

∂t
,v

)
+

λ

2λ0

(
∂ exp(ψ)

∂t
,χ

)
, (2.18)

Blog(û;U ,V ) =
ηp
λ0

(exp(ψ),∇sv) + 2(ηe∇su,∇sv) + 〈ρû · ∇u,v〉 − (p,∇ · v)

+ (∇ · u, q) +
1

2λ0
(exp(ψ),χ)− (∇su,χ)

+
λ

2λ0

(
u · ∇ exp(ψ)− exp(ψ) · ∇u− (∇u)T · exp(ψ) + 2∇su,χ

)
, (2.19)

Llog(V ) = 〈f ,v〉+
1

2λ0
〈I,χ〉. (2.20)

2.3 Galerkin finite element discretization and time discretization

The standard Galerkin approximation for the variational problem in both formulations
(standard and logarithmic), which have been established in (2.10) and (2.17), is described
next. Let Th = {K} be a finite element partition of the domain Ω. The diameter of
an element K ∈ Th is denoted by hK and the diameter of the partition is defined as
h = max{hK |K ∈ Th}.

In the case of the standard formulation, from Th we may construct conforming finite
element spaces for the velocity, the pressure and the elastic stress, Vh ⊂ V , Qh ⊂ Q,
Υh ⊂ Υ, respectively. Calling X h := Vh × Qh ×Υh the Galerkin FE approximation of
the problem consists in finding Uh :]0, tf [−→ X h, such that:

Gstd(Uh,V h) +Bstd(uh;Uh,V h) = F std(V h),

for all V h = [vh, qh,χh] ∈ X h, and satisfying the appropiate initial conditions.
On the other hand, for the logarithmic conformation reformulation, from Th we con-

struct the finite element space for the new variable ψ, Ῡh ⊂ Ῡ. So, X̄ h := Vh×Qh× Ῡh

is the Galerkin FE now now, and the Galerkin approximation consists in finding Uh :
]0, tf [−→ X̄ h, such that

Glog(Uh,V h) +Blog(uh;Uh,V h) = F log(V h),

for all V h = [vh, qh,χh] ∈ X h.
It is well known that the Gakerkin approximation is unstable unless convective terms

are not relevant and appropriate compatibility conditions between Qh and Vh, on the
one hand, and between Vh and Υh, on the other hand, are met (see for example [12]
and references therein). In the next Section we will present a stable formulation, able in
particular to deal with continuous approximations for all fields, which is the situation we
shall consider.

We define now the discretization in time. Consider a partition of the interval [0, tf ] in
δt constant size time steps, and let tn = nδt, being n = 0, 1, 2, . . . . Let f(t) be a generic
time dependent function. We will denote as fn the approximation of the function at time
level tn. A backward differencing (BDF) approximation to the time derivative of function

f of order k = 1, 2, . . . , is given by δkf
n+1

δt , where δkf
n+1 is defined as

δkf
n+1 =

1

γk

(
fn+1 −

k−1∑
i=0

ϕikf
n−1

)
,
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and γk and ϕik are numerical parameters. Particularly, first and second order backward
differencing schemes (respectively referenced as BDF1 and BDF2) have been implemented
in this work, based on the approximations:

δ1f
n+1

δt
=
fn+1 − fn

δt
=
∂f

∂t

∣∣∣∣
tn+1

+O(δt),

δ2f
n+1

δt
=

3fn+1 − 4fn + fn−1

2δt
=
∂f

∂t

∣∣∣∣
tn+1

+O(δt2).

In any case, the stabilized finite element method which will be exposed is independent of
the time scheme used.

For the logarithmic formulation, using the approximations of the exponential described
in [11], we obtain the next expression for the linearized time derivative of the exponential:

∂(exp(ψ))

∂t

∣∣∣∣
tn+1

=
1

δtγk

[
exp(ψ̂

n+1
) ·ψn+1 + exp(ψ̂

n+1
)− exp(ψ̂

n+1
) · ψ̂n+1

−
k−1∑
i=0

ϕik exp(ψn−i)
]

+O
(
δtk
)

+O
((
δψn+1

)2)
,

where ψ̂
n+1

stands for a previous guess of ψn+1 that depends on the linearization scheme

and δψn+1 = ψn+1 − ψ̂n+1
.

3 Stabilized finite element formulation

In this section, two different stabilized finite element methods for computing viscoelastic
flows will be presented: the first is purely based on the finite element residual, and the
second one is a term-by-term method. However, both depart from the framework described
in [4], which consits in splitting the unknowns U in the sum of two components, Uh

(component which can be captured by the finite element space) and Ũ (the remainder,
called sub-grid scale). For more details about this development, see [13]. Additionally,
we will develop these methods for the two different formulations considered in this work:
the well-known standard viscoelastic formulation and for the logarithmic reformulation.
Note that the stabilization methods proposed are suitable for the three field Newtonian
problem too, which is recovered by considering the parameter λ equal to zero.

3.1 Residual-based VMS methods

The problem that we pretend to approximate is (2.5) in strong form for both standard
(2.10) and logarithmic (2.17) formulations.

Firstly, we will deal with the standard formulation. Let us suppose that Lstd(û; ·) is a
linear operator for a given û. Introducing the sub-grid scale decomposition and integrating
by parts, the method leads to find Uh :]0, tf [−→ X h such that

Gstd(Uh,V h) +Bstd(uh;Uh,V h) +
∑
K

〈Ũ ,L∗(uh;V h)〉K = Lstd(V ), (3.1)

for all V h ∈ X h, where L∗(uh;V h) is the formal adjoint of the operator of Lstd (û; ·),
typically without considering boundary conditions, Ũ is the sub-grid scale, which needs
to be approximated and has components Ũ=[ũ, p̃, σ̃]. To justify (3.1), see e.g. [14], and
recall that we are considering all approximations continuous.

Analogously, for the logarithmic formulation, method leads to find Uh :]0, tf [−→ X̄ h

such that

Glog(Uh,V h) +Blog(uh;Uh,V h) +
∑
K

〈Ũ ,L∗(uh;V h)〉K = Llog(V ), (3.2)
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for all V h ∈ X h. Let us remark that for both formulations (standard and logarithmic)
the same operator L∗ (û; ·) will be employed, following the process described in [11]:

L∗(û;V ) :=


∇ · χ− 2ηe∇ · (∇sv)− ρû · ∇v −∇q

−∇ · v
1

2ηp
χ+∇sv − λ

2ηp

(
û · ∇χ+ χ · (∇û)T +∇û · χ

)
 .

This is due to the fact that we have not changed variables in the stress test function.
Once operators Dt and L are defined for both formulations, the sub-grid scales can be

written in terms of the finite element component as

∂Ũ

∂t
+α−1Ũ = P̃ [F −Dt(Uh)− L(uh;Uh)], (3.3)

where we denote P̃ as the L2 projection onto the space of sub-grid scales.
Note that the most classical approach, the Algebraic Sub-Grid Scale (ASGS) method

is recovered if P̃ is the projection onto the space of FE residuals. On the contrary, if P̃ is
taken as the orthogonal projection to the FE space, the Orthogonal Sub-Scale Stabilization
(OSGS) method [15] is recovered. On the other hand, α is taken as a diagonal matrix of
stabilization parameters, α = diag (α1Id, α2, α3Id×d), with Id the identity on vectors of
Rd, Id×d the identity on second order tensors, and parameters αi, i = 1, 2, 3, being defined
as in [12]:

α1 =

[
c1
η0
h21

+ c2
ρ|uh|
h2

]−1
, (3.4)

α2 =
h21
c1α1

, (3.5)

α3 =

[
c3

1

2ηp
+ c4

(
λ

2ηp

|uh|
h2

+
λ

ηp
|∇uh|

)]
−1, (3.6)

where c1, c2, c3 and c4 are constants, h1 is the characteristic length calculated as the square
root of the element area in the two-dimensional case and the cubic root of the element
volume in the three-dimensional case, and h2 is another characteristic length calculated
as the element length in the streamline direction. Term |uh| is the Euclidean norm of the
velocity and |∇uh| is the Frobenius norm of the velocity gradient.

Now, inserting the solution of (3.3) with α given by (3.4)-(3.6) into (3.1), we obtain
the following residual-based stabilization method: find Uh :]0, tf [−→ X h such that

Gstd(Uh,V h) +Bstd(uh;Uh,V h) +
∑
K

〈p̃,−∇ · vh〉K

+
∑
K

〈ũ,∇ · χh − 2ηe∇ · (∇svh)− ρuh · ∇vh −∇qh〉K

+
∑
K

〈
σ̃,

1

2ηp
χh +∇svh −

λ

2ηp

〈
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉, (3.7)

where ũ, p̃ and σ̃ are the sub-grid scales of the momentum, the continuity and the con-
stitutive equation, repectively, and Bstd(ûh;Uh,V h) is given in (2.12).

The sub-grid scales are the solution to the problem:

ρ
∂ũ

∂t
+ α−11 ũ =P̃

(
f −

(
ρ
∂uh
∂t
−∇ · σh − 2ηe∇ · (∇suh) + ρuh · ∇uh +∇ph

))
,

(3.8)
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α−12 p̃ =− P̃ (∇ · uh) , (3.9)

λ

2ηp

∂σ̃

∂t
+ α−13 σ̃ =P̃

(
− 1

2ηp
σh +∇suh

)
+P̃

(
− λ

2ηp

(
∂σh
∂t

+ uh · ∇σh − σh · ∇uh − (∇uh)T · σh
))

. (3.10)

Note that the stabilization terms added to the Galerkin method in (3.7) are proportional to
the finite element residuals of the momentum, the continuity and the constitutive equation.
Due to this, the stabilized method defined by (3.7) will be denoted as a residual-based
VMS method. Furthermore the prefix orthogonal will be added if P̃ = P⊥h .

On the other hand, if the time derivatives of the velocity sub-grid scale (in equation
(3.8)) and the stress sub-grid scale (in equation (3.10)) are neglected, the method is usually
called quasi-static, otherwise it will be denoted as dynamic. Particularly, when P̃ = P⊥h ,
two additional simplifications can be done:

1. P⊥h

(
∂uh
∂t

)
= 0 and P⊥h

(
∂σh
∂t

)
= 0.

2. P⊥h (f) ≈ 0.

If these approximations are adopted, a weakly consistent method is obtained, although if
f is a finite element function, full consistency is recovered. The initial condition for the
velocity and stress sub-grid scales in (3.8) and (3.10) can be taken as zero [16].

For the logarithmic reformulation, equation (3.2), considering the expression of the
sub-grid scales (3.3) it can be expressed as

Glog(Uh,V h) +Blog(uh;Uh,V h)

+
∑
K

〈ũ,∇ · χh − 2ηe∇ · (∇svh)− ρuh · ∇vh −∇qh〉K

+
∑
K

〈p̃,−∇ · vh〉K +
∑
K

〈
σ̃,

1

2ηp
χh +∇svh

〉
K

+
∑
K

〈
σ̃,− λ

2ηp

(
χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉+
1

2λ0
〈I,χ〉,

where ũ, p̃ and ψ̃ are the sub-grid scales of the momentum, the continuity and the constitu-
tive equation repectively, and Blog is the bilinear form of the problem when the logarithmic
formulation is considered. We have to remark that the sub-grid scale of the constitutive
equation, for simplicity, has also been computed as σ̃ in the logarithmic case, considering

σ̃ =
ηp
λ0

(
exp

(
ψ̃
)
− I
)

. As a residual-based VMS method is applied, sub-grid scales are

defined as follows:

ρ
∂ũ

∂t
+ α−11 ũ = P̃

(
f −

(
ρ
∂uh
∂t
− ηp
λ0
∇ · exp(ψh)

))
+ P̃ (−2ηe∇ · (∇suh) + ρuh · ∇uh +∇ph) , (3.11)

α−12 p̃ = P̃ (−∇ · uh) , (3.12)

λ

2ηp

∂σ̃

∂t
+ α−13 σ̃ = P̃

(
− 1

2λ0
exp(ψh) +∇suh

)
+ P̃

(
− λ

2λ0

(
∂ exp(ψh)

∂t
+ uh · ∇ (exp(ψh))

))
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+ P̃

(
− λ

2λ0
(− exp(ψh) · ∇uh)

)
+ P̃

(
− λ

2λ0

(
−(∇uh)T · exp(ψh) + 2∇suh

))
. (3.13)

Note that the stabilized parameters α are the same as those defined by the standard
formulation (3.4)-(3.6).

3.2 Term-by-term stabilized formulation

3.2.1 Motivation

The method proposed here has been motivated by the fact that not all the terms of the
product of ∇ ·χh − 2ηe∇ · (∇svh)− ρuh · ∇vh −∇qh, and the terms that contribute to ũ
in (3.7) provide stability. Likewise, the same occurs for the constitutive equation adjoint,

1

2ηp
χh +∇svh −

λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)
,

and terms of σ̃. Therefore, some of these terms can be neglected without loss of stability.
This is the key idea in term-by-term stabilization methods (developed, for example in
[17, 18, 13]).

Let us consider the expresions (3.8) and (3.10), taking into account that P̃ = P⊥h ,

P⊥h (f) ≈ 0, P⊥h

(
∂uh
∂t

)
= 0 and P⊥h

(
∂σh
∂t

)
= 0. Therefore we can rewrite them as follows:

ρ
∂ũ

∂t
+ α−11 ũ = P⊥h (∇ · σh) + P⊥h (2ηe∇ · (∇suh))− P⊥h (ρuh · ∇uh)− P⊥h (∇ph) ,

(3.14)

λ

2ηp

∂σ̃

∂t
+ α−13 σ̃ = −P⊥h

(
1

2ηp
σh

)
+ P⊥h (∇suh)

− P⊥h
(
λ

2ηp
uh · ∇σh

)
+ P⊥h

(
λ

2ηp

(
σh · ∇uh + (∇uh)T · σh

))
. (3.15)

The key ingredient that allows to consider any of these terms instead the residual based
VMS is the orthogonal projection P⊥h . The right-hand-side (RHS) of (3.14) and (3.15) is
not zero when the FE solution is replaced by the continuous solution, and consequently
the method is not consistent. Nevertheless, the consistency error is optimal [19].

Additionally, some of the terms in the RHS of (3.14) and (3.15) can be neglected,
like the second term of (3.14), because they do not contribute to stability. The three
remainding terms help to improve stability, the first one giving control of the divergence
of the viscoelastic stresses, the third one on the convective term and the fourth one on the
pressure gradient. Similar considerations can be applied to modify equation (3.15), now
considering that P⊥h (σh) = 0.

As explained earlier, the previous splitting and simplification technique results in an a
priori weakly consistent method. However, when the splitting approach is used in (3.15)
the method fails to converge when applied to simple numerical tests. This convergence
failure is independent of the approximation properties (stability and accuracy) of the
method, but clearly limit its applicability. This breakdown is produced by the fact that
the full residual (the sum of all terms) is usually small whereas each separate term is large
(considering absolute terms). Consequently, in numerical solutions, the split term-by-term
method for the constitutive equation is not as efficient as the residual based one. It is
remarkable that this phenomenon occurs also in simple stationary problems, as shown in
the next example.
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Fig. 1: Scheme of the 4:1 contraction problem.

x

y

z

Fig. 2: Mesh used for the 4:1 contraction test.

3.2.2 Example of convergence failure of the term-by-term stabilization of the
constitutive equation

In this subsection, we will briefly describe the numerical example and the results obtained
when the lack of convergence for the term by term stabilization occurs. We have considered
the well-known 4:1 contraction benchmark (see Figure 1) in a stationary version, with a
Weissemberg number equal to 4.0 and Reynolds number equal to 0.01, as it is considered
in [12], with the same boundary conditions: on the solid walls Γwall, non-slip conditions
are imposed for the velocity field and on symmetric boundaries Γsym , the component y of
the velocity is set to zero. Moreover, on the inlet boundary Γin a fully parabolic velocity
profile and stress profile are prescribed as

ux =
3Q

2H1

(
1− y2

(2H1)2

)
, uy = 0,

σxx = 2λ(1− β)η0

(
3Q

H3
1

y

)2

, σxy = −(1− β)η0

(
3Q

H3
1

y

)
, σyy = 0,

where Q is the flow rate, set to 1. In this case the characteristic length is H1 = 4, which
is the length of the inlet channel, and H2 = 1. For the outlet boundary Γout, the x
component of the velocity is let free, and component y is set to zero, like the pressure. In
addition, component x of the normal of the total Cauchy stress tensor is set to zero in this
boundary. The space discretization consists of 7784 nodes and 14793 triangular elements,
whose minimum element size is hmin = 0.05, as it is plotted in Figure 2.

In Table 1, the different values for the terms of the constitutive equation residual are
plotted for a numerical integration point situated approximately at coordinates (17.5,−3.5)
and for each component together with the total residual, indicated in the last row. Other
points have also been checked, and the same effect is observed in all of them. The values
represented in Table 1 correspond to inner-iteration 20. A continuation iterative scheme
in terms of the relaxation time λ has been employed, using 15 continuation steps. Within
each of them, a fixed point iterative scheme has been employed, so that ûh in Table 1 is
the velocity at the previous iteration of the one considered.

As it can be observed, in components xx and xy of the residual, the full residual has
a smaller value than other terms such as the rotational or the convective terms separately
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Residual terms component xx component yy component xy

1

2ηp
σh 0.82002 0.68599 0.80990

−∇suh 0.35160 -0.41654 -0.44841
λ

2ηp
ûh · ∇σh 2.89475 -1.30149 0.74938

− λ

2ηp

(
σh · ∇ûh + (∇ûh)T · σh

)
-4.29379 -0.59164 -2.14322

Full residual -0.22741 -1.62369 -1.03234

Tab. 1: Values adopted by each term using the term-by-term stabilization in the constitu-
tive equation. Inner-iteration 20.

(in absolute value). When this effect happens, the iterative scheme for the term-by-term
formulation fails. Note that this occurs when the Weissemberg number is significant; if it
is low, convergence does not experiment this kind of problems.

3.2.3 Final design

In view of the previous discussion, the method must be designed carefully. For this reason,
along the present paper the method denoted as term-by-term (S-OSS) will be built as a
split term-by-term for the momentum equation, and the full residual-based VMS, explained
in Subsection 3.1, for the constitutive equation.

Under the described circumstances and following this splitting approach, we can split
ũ = ũ1+ũ2+ũ3, while the stress sub-grid scale remains as σ̃. Therefore, the term-by-term
finite element formulation proposed consists in finding Uh = [uh, ph,σh] : (0, tf) −→ X h

such that

Gstd(Uh,V h) +Bstd(uh;Uh,V h) +
∑
K

〈ũ1,−ρuh · ∇vh〉K

+
∑
K

〈ũ2,−∇qh〉K +
∑
K

〈ũ3,∇ · χh〉K +
∑
K

〈p̃,−∇ · vh〉K

+
∑
K

〈
σ̃,

1

2ηp
χh +∇sv − λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉,

for all [vh, qh,σh] ∈ X h, where Bstd is the bilinear form defined in (2.12), and the sub-grid
scales ũ1, ũ2, ũ3, p̃, are the solution of the evolution problems:

ρ
∂ũ1

∂t
+ α−11 ũ1 = −P⊥h (ρuh · ∇uh), (3.16)

ρ
∂ũ2

∂t
+ α−11 ũ2 = −P⊥h (∇ph), (3.17)

ρ
∂ũ3

∂t
+ α−11 ũ3 = P⊥h (∇ · σh), (3.18)

α−12 p̃ = −P⊥h (∇ · uh), (3.19)

while the sub-grid scale σ̃ is the solution of (3.10), defined in the previous section. Pa-
rameters αi, i = 1, 2, 3 are the estabilization terms, already defined in (3.4)-(3.6). The
proposed method is not residual-based, and therefore, is not consistent in the sense used
in the finite element context, although it has an optimal consistency error.
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Finally, the term-by-term stabilization proposed for the log-conformation formulation
consists in finding Uh = [uh, ph,ψh] : (0, tf) −→ X̄ h such that

Glog(Uh,V h) +Blog(uh;Uh,V h) +
∑
K

〈ũ1,−ρuh · ∇vh〉K

+
∑
K

〈ũ2,−∇qh〉K +
∑
K

〈ũ3,∇ · χh〉K +
∑
K

〈p̃,−∇ · vh〉K

+
∑
K

〈
σ̃,

1

2ηp
χh +∇sv − λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉,

for all [vh, qh,χh] ∈ X h, where Blog is the bilinear form defined in (2.19), the sub-grid
scale ũ3, is now defined as the solution of:

ρ
∂ũ3

∂t
+ α−11 ũ3 = P⊥h

(
ηp
λ0
∇ · (exp(ψh))

)
. (3.20)

The sub-grid scales ũ1, ũ2, and p̃ are solutions of (3.16), (3.17), (3.19), respectively, and
the sub-grid scale σ̃ is the solution of (3.13). Additionally, the parameters αi, i = 1, 2, 3
are defined in (3.4)-(3.6).

3.3 Discretization of the equations for the sub-grid scales

The time dependent behaviour of the sub-grid scales is widely analized in [2, 5], although
in this Subsection we try to describe the main ideas for the two methods presented in
this work: the residual-based method and the term-by-term one. For both, we have used
the BDF1 scheme to discretize the defined sub-grid scales. Particularly, in the case of
the split stabilization method, sub-grid scales (3.16) -(3.18) and the elastic stress sub-grid
scale (3.10) can be written as

ũn+1
1 =

(
ρ

1

δt
+

1

αn+1
1

)−1(
ρ

1

δt
ũn1 − ρP⊥h (un+1

h · ∇un+1
h )

)
,

ũn+1
2 =

(
ρ

1

δt
+

1

αn+1
1

)−1(
ρ

1

δt
ũn2 − P⊥h (∇pn+1

h )

)
,

ũn+1
3 =

(
ρ

1

δt
+

1

αn+1
1

)−1(
ρ

1

δt
ũn3 + P⊥h (∇ · σn+1

h )

)
,

σ̃n+1 =

(
λ

2ηp

1

δt
+

1

αn+1
3

)−1( λ

2ηp

1

δt
σ̃n + P̃

(
− 1

2ηp
σn+1
h +∇sun+1

h

− λ

2ηp

(
δσn+1

h

δt
+ un+1

h · ∇σn+1
h − σn+1

h · ∇un+1
h − (∇un+1

h )T · σn+1
h

)))
.

From these expressions, we can conclude that the sub-grid scales depend directly on

α1dyn =
(
ρ 1
δt + 1

α1

)−1
and α3dyn =

(
λ
2ηp

1
δt + 1

α3

)−1
, where α1dyn and α3dyn redefine the

classical stabilitation parameters and now depend on the time-step size. The procedure
is analogous for the logarithmic formulation, now considering (3.16), (3.17) and (3.20) for
ũn+1
1 , ũn+1

2 and ũn+1
3 , respectively, and (3.13) for σ̃n+1; the same expressions for α1dyn

and α3dyn are used.
Concerning the new definition of the stabilization parameters, an extremely relevant

study about the instability that appears when the ASGS method and the quasi-static sub-
grid scales are employed is developed by Bochev et al. in [3]. They relate this instability to
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the reduction of δt if h (element size of mesh) remains fixed, i.e. for anisotropic space-time
discretizations. However, the instability described disappears automatically if δt ≥ Cαn+1

1 ,
where C is a positive constant. Therefore it seems clear that the stabilization parameter
and the time step size must be related in the quasi-static stabilized finite element methods.
This question is justified in [8], remarking that when this inequality holds, it will be
unnecessary to use dynamic sub-grid scales.

Furthermore, we can observe that for the viscoelastic flow problem parameter α3 is
also modified, but no references exist about the possible effects that this change could
produce. This question will be explored and discussed along the numerical examples, in
the next Section.

4 Numerical results

This Section aims to show the importance of dynamic sub-grid scales to solve viscoelastic
problems, and particularly the suitability of the term-by-term stabilization method de-
scribed along the paper for both possible formulations, standard and logarithmic. Firstly,
in Section 4.1, we display the typical flow over a cylinder problem for Re=100, where the
different formulations proposed are compared for several Weissemberg numbers and time
steps δt. Secondly, a dynamic lid-driven cavity flow problem is presented in Section 4.2
in order to discuss the efficency and stability of the dynamics sub-grid scales in a more
complex benchmark for two different cases: a stationary one with Re=0, and a dynamic
forced regime with Re=100. Finally the formulation is tested in a three-dimensional lid
driven cavity in the Section 4.3 as an extension of the two-dimensional dynamic version.

4.1 Flow over a cylinder

In this Subsection, the well-known flow over a cylinder problem is used to achieve several
objectives: firstly, to compare the various stabilization methods proposed (dynamic and
quasi-static formulations) in terms of stability when the time step is small, and when
the Weissemberg number increases. Secondly, the solution obtained with the proposed
formulations when using rather coarse meshes is compared with the one obtained with a
fine mesh, assessing the suitability of the methods when using coarse meshes. Lastly, the
behaviour of velocity sub-grid scales is studied comparing the results of the residual-based
and the term-by-term formulations.

4.1.1 Setup

The computational domain is defined as a rectangle of length 16 and width 8, with a
unitary cylinder centered at point (4,0), as it is plotted in Figure 3.

The boundary conditions of the problem are as follows. The inflow velocity of the
problem is prescribed in Γin as ux = 1 and uy = 0, while Γtop and Γbottom are considered
fictitious walls where uy = 0 and ux is left free. For the outflow boundary Γout the
velocity is left free in both components, and finally, for the wall of the cylinder Γcyl non-
slip conditions are set, that is, velocity is set to zero. Note that the stress components
have been let free in all boundaries.

The benchmark has been computed for different Weissemberg numbers, defined by
We = λU

L , where U and L are the characteristic velocity and length respectively, and

the Reynolds number, defined by Re = ρUL
η0

, has been set to 100. The viscoelastic fluid
parameters are: ρ = 1, β = 0.5 and η0 = 0.01.

The mesh used to compute this numerical example is rather coarse, due to the fact
that we aim to check that our methods do not need to fulfill the δt ≥ Ch2 inequality in
order to obtain stable solutions. In other words, we show that the formulation proposed
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Fig. 3: Schematic representation of flow over an unconfined cylinder.

Fig. 4: Mesh employed.

is independent of the space-time discretization, without looking for an accurate result. In
particular, the mesh employed is unstructured, with an element size around the cylinder
of hmin = 0.01, and coarser at the rest of the domain (maximum element size hmax = 0.4).
For the computation of this benchmark a BDF1 time discretization scheme has been used;
the time step considered will be indicated in each case.

4.1.2 Stability study

First of all, we pretend to show the stability of the proposed formulation employing the
time-dependent sub-grid scales explained in previous Subsections, in comparison with
the quasi-static formulation. We have considered the orthogonal residual based VMS
formulation (see [12]) and the term-by-term stabilization in the standard formulation.
Also, a wide range of time step sizes have been contemplated to show numerically that
the dynamic formulation is more stable than the quasi-static one, in particular for time
steps up to δt ≈ α1,min (minimum of the first stabilization parameter) for linear (P1) and
quadratic (P2) elements.

Regarding the space discretization, Figure 4 has been employed to elaborate this com-
parative, resulting in α1,min ≈ 1.156 × 10−3 when P1 elements are considered. For P2
elements the minimum stabilization parameter is α1,min ≈ 7.4 × 10−5. Note that α1,min

is a value obtained from each problem, and depends directly on the h (element size)
magnitude .

In all these cases, the Weissemberg number has been fixed to 0.125, that is a low value,
in order to avoid failures associated with a high elasticity.

Results are summarized in Table 2, where the suffix Static indicates the cases solved
through a quasi-static method, whereas Dyn refers to the dynamic sub-grid scale meth-
ods. On the other hand, the term-by-term stabilization method is denoted by SOSS and
OSS is labelled for the residual-based orthogonal VMS method. In both cases, linear and
quadratic elements, the dynamic method is the most efficient, as it has been argued in
the predecing section. In both cases (P1 and P2 elements), the most unstable stabiliza-
tion method is the quasi-static formulation together with the residual-based stabilization,
which is not able to solve the problem for δt > 21α1,min for linear elements. The quasi-
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P1 elements Time step (δt)

Method 0.050 0.0250 3.125× 10−3 1.562× 10−3

Static-OSS Solved Failed - -

Dyn-OSS Solved Solved Solved Solved

Static-SOSS Solved Solved Solved Failed

Dyn-SOSS Solved Solved Solved Solved

Tab. 2: Solved and failed cases We = 0.125, α1,min ≈ 1.156× 10−3.

P2 elements Time step (δt)

Method 0.025 0.0125 3.906× 10−4 1.953× 10−4

Static-OSS Solved Failed - -

Dyn-OSS Solved Solved Solved Solved

Static-SOSS Solved Solved Solved Failed

Dyn-SOSS Solved Solved Solved Solved

Tab. 3: Solved and failed cases We = 0.125, α1,min ≈ 7.4× 10−5.

static formulation using a split stabilization is particularly stable in comparison with the
residual based. In this case, for both types of elements, the scheme presents instabilities
approximately when δt ≈ α1,min. For smaller time steps, only the dynamic stabilization
methods achieve convergence of the problem. Note that that the instability in principle
appears when the inequality δt ≥ Cαn+1

1 is not fulfilled.
A second comparative study has been carried out. In this case, the high Weissemberg

number instability has been tested, solving the flow past a cylinder problem for several
Weissemberg numbers. Let us recall that this dimensionless number represents the elas-
ticity in the flow, therefore when elasticity is high the computation of the flow leads to
several difficulties, among them, the exponential growth of the elastic stresses. In Table 4,
the dynamic formulation of the residual-based and the term-by-term stabilization for the
standard formulation and the logarithmic formulation are tested for different Weissemberg
numbers. In all cases, the time step is fixed at δt = 0.1, and continuation techniques have
not been employed.

Residual-based methods are the less stable ones and they fail for Weissemberg numbers
equal to 0.25 and 0.375, for standard and logarithmic formulations, respectively. It is
remarkable that the split term-by-term stabilization methods show a suitable robustness
in spite of using the standard formulation, as it can be observed in Table 4 for We = 0.375.
Nevertheless, the logarithmic formulation together with the dynamic sub-grid scales is the
most effective method: while the other methods are not able to converge for We = 0.5,
the dynamic logarithmic formulation is capable of converging in this case.

The conclusion is that for problems with a δt sufficiently small such that the inequality

Weissemberg (We)

Formulation 0.125 0.25 0.375 0.5

Std-OSS Solved Failed - -

Std-SOSS Solved Solved Solved Failed

Log-OSS Solved Solved Failed -

Log-SOSS Solved Solved Solved Solved

Tab. 4: Solved and failed cases for the two dynamic formulations (Std: Standard and Log:
Logarithmic), δt = 0.1.
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Weissemberg (We)

Formulation 0.125 0.165 0.25 0.5

Std-Static Solved Failed - -

Std-Dyn Solved Solved Solved Failed

Log-Static Solved Solved Failed -

Log-Dyn Solved Solved Solved Solved

Tab. 5: Solved and failed cases for S-OSS formulations, dynamic and quasi-static, δt = 0.1.

δt ≥ Cαn+1
1 is not satisfied (at a certain time step n), and whose Weissemberg number is

particularly high, only a dynamic term-by-term logarithmic formulation will be effective.
We have tested numerically that if, for instance, δt = 1.562 × 10−3 for P1 elements is
used, only the dynamic term-by-term stabilization is stable (see Table 2). However, if we
contemplate a flow with a Weissemberg number equal to 0.5, this model would not be able
to converge unless a logarithmic formulation is used.

Finally, a study has been performed, putting the focus on the Split-OSS methods
and how the dynamic formulation can affect stability not only when the time step is
small, but also in terms of elasticity. In Table 5 the most significant results have been
summarized, the conclusion being that dynamic formulations are more efficient avoiding
elastic instabilities, permitting the computation of fluid flows with a higher Weissemberg
number. For example, for the logarithmic conformation formulation, α1,min ≈ α1dyn,min ≈
0.119× 10−2, i.e., the stabilization parameter of the momentum equation remains similar
in both problems, dynamic and quasi-static, while the constitutive stabilization parameter
differs significantly (α3,min ≈ 0.335 × 10−2 and α3dyn,min ≈ 0.562 × 10−4). This is due to
the structure of the dynamic parameter, which apart from depending on time step size
also depends on the parameter λ, directly related with the dimensionless Weissemberg
number.

It is clear that the logarithmic formulation is more expensive than the standard one
due to the computations of the exponential of the variable ψ, among others [11]; this
needs to be taken into account when selecting the proper formulation and stabilization
method for a given problem. In Figure 5 a general scheme has been displayed for the
Split-OSS formulations, where the characteristics of the problem determine the use of
dynamic/quasi-static sub-grid scales and logarithmic/standard formulations. The vertical
axis represents the Weissemberg number magnitude, and the horizontal axis corresponds
the size of the time step. In this case, labels “big” and “small” refer to magnitudes in
comparison with the stabilization parameter α1,min and the quoted inequality δt ≥ Cαn+1

1

for all n. Note that the thresholds are not sharp, due to the fact that the dynamic
stabilization is also useful to deal with some high Weissemberg problems and it could
avoid the need of using the logarithmic formulation to solve them, which is much more
expensive from the computational point of view.

4.1.3 Comparison between methods

In this subsection we compare the solution obtained by using the proposed methods con-
sidering a low Weissemberg value, set to 0.125.

Firstly, in Figure 6, pressure, velocity and stress have been plotted for the solution
obtained with the dynamic term-by-term formulation, considering a time step δt = 0.1,
for linear (left) and quadratic (right) elements. The differences found between the results
obtained with P1 and P2 elements are due to the coarse discretization used; due to this,
solutions obtained using P2 elements are more accurate and less mesh-dependent. Note
that for higher Weissemberg numbers, the results are very similar qualitatively, with the
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Fig. 5: A general scheme of S-OSS formulations and methods.

(a) P1 elements (b) P2 elements

(c) P1 elements (d) P2 elements

(e) P1 elements (f) P2 elements

Fig. 6: Isolines of the pressure, velocity and component xx of the elastic stress, δt = 0.1.
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exception of the elastic stress tensor, whose maximum values increase significantly on the
wall of the cylinder.

The evolution of the main fields in a downstream point situated at (6, 0) is displayed in
order to compare the solution between stabilization methods in Figure 7. The graphs show
curves along time when oscillatory solutions are achieved for the second component of the
velocity, the pressure and the xx component of the stresses. Also, results are depicted
for different time step sizes: for δt = 0.1 and for δt = 1.5625 × 10−3, in other words,
δt ≈ α1,min. For the smaller time step, only the dynamic methods are stable, as detailed
in Table 2, for this reason only OSS and S-OSS dynamic cases are taken into account.

As explained in [8], the instability derived from the space-time discretization restriction
can be identified in the evolution of pressure, as shown in Figure 7c when the static OSS
stabilization method is used.

On the other hand, in Figure 7a we can observe that the quasi-static sub-grid scales
together with the residual-based stabilization is the less dissipative one, followed by the
dynamic sub-grid scales version. In comparison, the term-by-term formulation is more dif-
fusive than the orthogonal residual-based methods. Additionally, the dynamic formulation
is also more dissipative than the quasi-static version.

We need to remark that the differences between the residual-based and the term-by-
term formulations appreciated in Figure 7 are caused directly by the coarse mesh employed,
since for finer discretizations no significant differences are found.

The next figures show an interesting result. In Figures 8 and 9 the components x and
y of the sub-grid scales are plotted for both dynamic formulations utilized: the orthogonal
residual, denoted by ũ, and the split term-by-term, denoted in Figures 8 and 9 as ũ1,
ũ2 and ũ3. At first sight, the sub-grid scales obtained by the split formulation are very
different to the ones of the orthogonal residual method. The existence of a difference
between both methods is evident, because while in the term-by-term formulation only
local inner products of the convective term, the pressure gradient and the divergence of the
stress are considered, the residual stabilization takes into account all of the cross product
terms of these operators applied to the unknowns and the test functions. Furthermore,
the sub-grid scales of the velocity are not similar in both methods. However, when the
three sub-grid scales are added (denoted by

∑3
i=1 ũi), the result is very similar to the

sub-grid scales obtained with the residual based formulation, as illustrated in Figures 8
and 9. This effect has already been reported for the Navier-Stokes problem in [8]. The
results for quadratic elements are shown in Figure 9. The general trend is similar too,
although the presence of the Laplacian term in the residual-based formulation is probably
the cause for the observed differences.

In this case, the solutions obtained with the logarithmic formulations are identical to
the standard formulation. For this reason, the type of formulation (standard or logarithmic
reformulation) has not been specified in this comparative.

4.2 Lid-driven cavity flow problem

The lid-driven cavity flow is a good example to illustrate the differences that can be gen-
erated by the viscoelastic contribution in the fluid, due to the elastic stresses dependance
on the previous deformation history. In this case, we have solved it to prove that the
dynamic term-by-term formulation is also efficient.

4.2.1 Steady-state case at Re = 0

A fluid confined in the unit square is considered, whose boundaries are solid walls except
the top boundary, which has a prescribed velocity in the x direction, as shown in Figure
10a. Because the viscoelastic fluid cannot sustain deformation at a stagnation point, the
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(a) δt = 0.1 (b) δt = 1.5625× 10−3

(c) δt = 0.1 (d) δt = 1.5625× 10−3

(e) δt = 0.1 (f) δt = 1.5625× 10−3

Fig. 7: Comparison between the different stabilization methods and δt = 0.1 (left) and
δt = 0.0015625 (right).

Fig. 8: Comparison of the sub-grid scales at δt = 0.1, P1 elements.
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Fig. 9: Comparison of the sub-grid scales at δt = 0.1, P2 elements.

(a) (b)

Fig. 10: Schematic representation of lid driven cavity (a) and Mesh used (b).

motion of the lid must be smooth and the gradient of the velocity should be zero at corners.
For this reason, on the boundary Γtop the horizontal velocity has been chosen as follows:

ux(x, 1, t) = 8

[
1 + tanh

(
8

(
t− 1

2

))]
x2(1− x)2,

uy(x, 1, t) = 0,

where the function 1 + tanh
(
8
(
t− 1

2

))
has a smooth transition, being zero at t = 0; ux

attains the maximum value (u = 1) when t > 1
2 at the center, x = 1

2 . In Γwall, velocity
is set to zero in both components. The inflow boundary conditions for the elastic stress
tensor are not needed since there is no inflow boundary in this problem. As characteristic
velocity, the maximum lid velocity has been taken to compute the dimensionless numbers,
and the characteristic length is 1, the size of each square’s side. The considered Weis-
semberg number is We = 1.0, and the Reynolds number Re = 0. Referring to the spatial
discretization, a structured mesh composed by 10000 bilinear Q1 elements is used (see Fig-
ure 10b) and the time step considered is δt = 0.0025. Referring to the time discretization
scheme, a BDF1 scheme has been used.

This test is carried out with the aim of comparing the accuracy of the dynamic and
the quasi-static stabilization methods in a stationary problem, comparing the results with
other authors [9, 20, 21, 22]. In our case neither continuation iterative methods to treat
the convergence, nor additional sub-relaxation schemes have been employed.

In Table 6 we show that the problem is solved successfully only for the combination
of the logarithmic formulation and the dynamic sub-grid scale stabilization. The steady
state tolerance is 10−5, and for each time step three non-linear Newton-Raphson iterations
are employed. As in the cylinder example, α1,min ≈ 0.83 × 10−5 ≈ α1dyn,min, therefore
the dynamic sub-grid scales for the momentum equations are not peremptory because
the instability is not originated by a small time step. In this case, the high Weissemberg
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Stabilization S-OSS

Formulation Quasi-static Dynamic

Standard Failed - time step 265 Failed - time step 1316

Logarithmic Failed - time step 240 Solved

Tab. 6: Comparison between different formulations, We = 1.0, δt = 0.0025. The time step
at which convergence fails is indicated.

Present Study

Fattal & Kupferman (2005)

Present Study

Fattal & Kupferman (2005)

Fig. 11: Results at time t = 8, for We = 1. Velocity profiles along the lines x = 1/2 and
y = 3/4.

number is the main problem. If we compare the stabilization methods, we see that α3,min ≈
0.25, whereas α3dyn,min ≈ 0.239× 10−2. This notable difference is due to the structure of
parameter α3dyn,min, which depends directly on the magnitude of λ. This structure of the
parameter combined with the log-conformation formulation allows to properly solve this
problem. It can be observed that while the quasi-static options fail early in the simulation,
even in the log-conformation reformulation, the dynamic stabilization is, from this point
of view, much more efficient for high Weissemberg numbers.

It must be remarked that although in [21], convergence was achieved with a quasi-
static and standard formulation, a fractional step scheme was used to solve it, together
with some continuation and sub-relaxation methods to help convergence, while in our case
only a monolithic method with a fixed point iterative scheme without extra sub-relaxation
artifacts is considered.

In Figure 11, cuts of the velocity components have been displayed, whereas in Figure
12 cuts of the components of ψ are plotted with the aim of comparing the results with
other works such as [9, 23, 22]. The results are extremely similar to those by Fattal and
Kupferman. For the component ψyy, the solution is compared with the results in [22].
The small differences found between our work and other publications probably are due to
the differences with the mesh used. For example, in [22] the mesh employed is extremely
fine near the boundaries in contrast with the uniform relatively coarse mesh used in our
case.

4.2.2 Dynamic case at Re = 100

In this case the boundary conditions are similar to the steady-state case, with the exception
of the condition imposed over the boundary Γtop, where now the horizontal velocity has
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Present Study

Fattal & Kupferman (2005)

Present Study

Fattal & Kupferman (2005)

Present Study

Comminal et al. (2015)

Fig. 12: Results at time t = 8, for We = 1. ψ profiles along the lines x = 1/2 and y = 3/4.

been selected as:

ux(x, 1, t) = 16x2(1− x)2 sin(πt),

uy(x, 1, t) = 0.

The sin(πt) term has been added to force the lid velocity to be time dependent and
dynamic. Additionally, the Reynolds number (Re = ρUL

η0
) will be considered equal to 100.

The mesh and time-step size considered are the ones defined in the stationary case, but
in this occasion the time discretization scheme is BDF2. We will show the results obtained
under the assumptions commented, and these will be compared with the solution shown
in [21], where the authors studied the same benchmark in the quasi-static case employing
a fractional step method developed in the same work.

If the time step is small, the quasi-static method is incapable of solving the dynamic
problem, considering that now the stabilization parameter is α1,min ≈ 4.1 × 10−4. In
Figure 13, streamlines are displayed for two different time steps, t = 1.5 and t = 2.0, and
in Figure 14 the component σxy of the stress has been plotted. These results are shown
in order to do a qualitative study, similar snapshots are presented in [8]. In addition, in
Figure 14 the isolines that correspond to the component xy of the stress sub-grid scale
have been presented as isocontours. The same case has been checked for the dynamic
logarithmic formulation, obtaining similar results.

4.3 Three-dimensional case

In order to check that the proposed stabilization method works well also in the three-
dimensional case, we have simulated the lid driven cavity problem in the 3D case. The
problem is just an extension of the two-dimensional case developed in Subsection 4.2.
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(a) t = 1.5 (b) t = 2.0

Fig. 13: Streamlines in the lid-driven cavity, using the dynamic Split OSS method.

(a) t = 1.5 (b) t = 2.0

(c) t = 1.5 (d) t = 2.0

Fig. 14: Isolines of the component xy of the stresses (top), and of the sub-grid scale (bot-
tom), using the Split OSS method.
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(a) (b)

Fig. 15: Schematic representation of lid driven cavity 3D (a) and mesh used (b).

4.3.1 Setup

The three-dimensional lid driven cavity problem is solved for an unit cube, as displayed
in Figure 15a. On the top of the lid (denoted by Γtop in the scheme) the components of
the velocity are prescribed to:

ux(x, y, 1, t) = 256x2(1− x)2y2(1− y)2 sin(πt),

uy(x, y, 1, t) = 0,

uz(x, y, 1, t) = 0,

and velocity is fixed to zero at the rest of boundaries (Γwall). Similar to Subsection 4.2, the
boundary condition imposed on the top is due to two reasons: on the one hand the necessity
of imposing a smooth condition at the corners, and on the other hand the necessity of a
time-dependent boundary to make the problem dynamic. As in the two-dimensional case,
no boundary conditions are required for the stresses. The physical properties considered
for the problem are a Weissemberg number of 0.5 and a Reynolds number equal to 100.

The numerical spatial discretization consists in 15625 trilinear Q1 hexaedral elements,
and 17576 nodes, plotted in Figure 15b. Finally, referring to the time discretization, a
BDF1 time integrator is employed together with a time step size of δt = 0.01 and a time
interval from 0 to 2 seconds.

4.3.2 Results

The aim of this problem is to demonstrate that the dynamic sub-grid scale formulation
is able to solve three-dimensional cases; we do not have any reference to compare the
accuracy of our results, although the mesh employed can be considered coarse for the
problem being solved. No significant differences have been found between our results and
those reported in [21].

In Figure 16 we have plotted isolines of some relevant fields in cuts defined by planes
x = 0.5, y = 0.5 and z = 0.5, at time t = 1.5. In particular, Figure 16a shows the
distribution of the pressure, Figure 16b the first component of the velocity, and finally,
Figures 16c and 16d display the distribution of the component xy of the stresses and the
sub-grid scales of the stresses, respectively. The problem has been run using the dynamic
term-by-term standard and logarithmic formulations, obtaining very similar results.

Streamlines in the cut-plane y = 0.5 and for two different times (t = 1.5 and t = 2.0)
are shown in Figure 17.
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(a) (b)

(c) (d)

Fig. 16: Isolines in some cuts in Lid-driven cavity 3D, in t = 1.5.

(a) t = 1.5 (b) t = 2.0

Fig. 17: Streamlines in a cut-plane y = 0.5
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5 Conclusions

Along this work, various dynamic sub-grid scales VMS-stabilization methods have been
proposed with the goal of solving viscoelastic flow problems. The main ideas have been
applied to the log-conformation reformulation [10] of the viscoelastic equations, originally
proposed in [11]. For both formulations (standard and logarithmic), two different stabi-
lization methods have been designed: one based on the residual of the equations, and the
second one based on a split term-by-term stabilization for the momentum equation. The
stabilized methods defined in this work allow to solve time-dependent problems typically
where two different sources of instability can appear simultaneously: the one originated by
anisotropic space-time refinement when the time step is small and the well-known stress
exponential growth typical of high Weissemberg numbers of viscoelastic problems.

The proposed methods have been analyzed extensively in several benchmarks, us-
ing linear and quadratic elements, structured and unstructured meshes, doing different
comparatives between the quasi-static and dynamic stabilization methods to show the
efficiency and robustness of the new strategies. The results obtained are particularly re-
markable due to the high Weissemberg number reached with the dynamic formulation,
which remains stable even if the standard formulation is considered, apart from evident
benefits in anisotropic space-time discretizations when the time step is small. The com-
bination of dynamic sub-grid scales and the logarithmic formulation is capable of solving
problems with higher elasticity, although this formulation is more expensive. Finally, the
formulation also shows good results for the three-dimensional case.
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