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ANALYSIS OF A STABILIZED FINITE ELEMENT APPROXIMATION FOR A

LINEARIZED LOGARITHMIC REFORMULATION OF THE VISCOELASTIC

FLOW PROBLEM

R. Codina1 and L. Moreno2

Abstract. In this paper we present the numerical analysis of a finite element method for a lin-
earized viscoelastic flow problem. In particular, we analyze a linearization of the logarithmic re-
formulation of the problem, which in particular should be able to produce results for Weissenberg
numbers higher than the standard one. In order to be able to use the same interpolation for all
the unknowns (velocity, pressure and logarithm of the conformation tensor), we employ a stabilized
finite element formulation based on the Variational Multi-Scale concept. The study of the linearized
problem already serves to show why the logarithmic reformulation performs better than the stan-
dard one for high Weissenberg numbers; this is reflected in the stability and error estimates that we
provide in this paper.
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1. Introduction

Computing viscoelastic fluid flows when the fluid presents a dominant elastic behavior is one of the biggest
challenges of the computational rheology field nowadays. The equations that model the viscoelastic fluid flow
problem present several instabilities that have been studied for example in [1, 2]. These instabilities become
important when elasticity becomes dominant, in other words, when the Weissenberg number is high. This
dimensionless number is defined by We = λu/L, where λ is the characteristic relaxation time, u is the
characteristic velocity of the flow and L the characteristic length of the domain. Solving the viscoelastic fluid
flow problem for high Weissenberg numbers is known as the High Weissenberg Number Problem (HWNP) [3],
and it is usually described as a numerical phenomenon in which the iterative schemes breakdown even for
moderate Weissenberg numbers. The numerical instability was studied by Fattal and Kupferman [4], who
explained that it is present in the constitutive models and the standard numerical methods. Constitutive
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equations could present also other type of instabilities from a mathematical point of view, referred to as
constitutive instabilities [5,6]. These can be classified in two: the Hadamard instability, which is a consequence
of the non-linear fast response of the constitutive equation, and the dissipative instability, related to the
dissipative behavior of viscoelastic models. However, the reasons for the HWNP are different: one is the loss
of positive-definiteness of the conformation tensor, which is an internal variable that must be positive-definite
to be physically admissible [4, 7], and the second is the appearance of regions with large strain gradients.

From the numerical point of view, Fattal and Kupferman [4, 8] focussed the origin of the problem in the
inappropriate approximations to represent the stress tensor, standing out the necessity of preserving the
positivity of the conformation tensor. By following these ideas the logarithmic conformation reformulation
was proposed in [4] as a formulation of the equations which overcomes the instability and linearizes the
exponential stress profiles near the stress singularities. The formulation treats the exponential growth of
the elastic stresses, allowing to extend the usual range of Weissenberg numbers which can be considered
to simulate viscoelastic fluid flows. In this paper we will use a slightly different scaling of the logarithmic
reformulation. In contrast with the original one, our change of variables will be non-singular when the
Weissenberg number is close to zero and the flow is Newtonian [9]; a similar idea was presented in [10].

In addition to the instabilities mentioned, viscoelastic fluid flows present some compatibility restrictions
when the Galerkin finite element (FE) approximation is undertaken. First, velocity and pressure FE spaces
must satisfy the well known inf-sup condition for incompressible flows [11] and, secondly, there is another
inf-sup condition that needs to be satisfied between stresses and velocities [12]. This is studied for example
for the Navier-Stokes problem in [13, 14]; the same requirements are met in the viscoelastic case. Stable
interpolations are proposed in [15], whose analysis can be found in [16]. At the continuous level, these inf-sup
conditions are satisfied and the problem can be shown to have a unique solution in the slow viscoelastic
case [1, 2]; see also [17,18] for some results concerning strong solutions.

Referring to the FE approximation, there are several works that analyze the stationary Oldroyd-B problem
and present optimal error estimates. For instance, [19] is one of the first papers that shows the existence of
FE approximations assuming that the continuous problem admits sufficiently smooth and sufficiently small
solutions; bounds for the error are also provided. In [20], the authors establish the existence and a priori error
estimates using the EVSS (Elastic Viscous Split Stress) method, aimed to circumvent the inf-sup condition
between velocities and stresses. More recently, in [21] the authors present an error analysis of a particular
Oldroyd-B model with the limiting Weissenberg number going to infinity, assuming a suitable regularity of
the exact solution, for FE and finite volume methods. The time-dependent Oldroyd-B problem has also been
studied, for example in [22], using the SUPG method, aimed to circumvent convection instabilities.

In this work, the log-conformation reformulation is applied together with a stabilized FE formulation
based on the Variational Multi-Scale (VMS) method which aims at circumventing the inf-sup conditions and
dealing with convection dominated flows at the same time. The VMS concept was presented first by Hughes
et al. [23] for the convection-diffusion-reaction problem. These ideas were applied and extended in [14,24–26]
for the Navier-Stokes problem and the three-field Stokes problem considering the space of the sub-grid scales
orthogonal to the FE space. The viscoelastic fluid flow problem was stabilized following a VMS framework
in [27, 28] and in the logarithmic formulation the method was tested in [9] for some numerical examples in
which the Weissenberg number is relevant. This type of stabilization is also applied in [29,30].
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The present paper can be considered a continuation of the work presented in [14, 27]. In [14] a VMS
formulation for the three-field Stokes problem was presented and analyzed. The same approach was followed
in [27], in this case applied to a linearized version of the stationary standard formulation of the viscoelastic
flow problem, using the Oldroyd-B model. The linearization is based on considering given the advection
velocity and the velocity gradient in the rotational terms of the constitutive equation. The purpose of this
paper is to extend this analysis to the logarithmic reformulation of the viscoelastic problem. This analysis will
serve to explain its improved performance with respect to the standard formulation when the Weissenberg
number is high. This would be difficult to observe in the full nonlinear problem, since conditions to ensure
existence of solutions and their finite element approximation pose stringent requirements on the Reynolds
and Weissenberg numbers of the problem, even in the time dependent case; for the standard formulation and
using a similar approach as the one we follow here, this analysis can be found in [31].

This paper is organized as follows. In Section 2, the logarithmic formulation is described, starting from
the standard viscoelastic Oldoryd-B fluid flow equations; Section 3 presents the FE method employed, based
on the VMS approach. In Section 4 the numerical analysis is developed; in particular, in Section 4.2 stability
and convergence are proved for a mesh dependent norm, while in Section 4.3 results are obtained for natural
norms. Finally, conclusions are drawn in Section 5.

2. The modified log-conformation formulation problem

2.1. Standard formulation for the viscoelastic flow problem.

Let us start presenting the standard equations associated to the viscoelastic flow problem. Let us consider
a viscoelastic fluid moving in a domain Ω of Rd (d = 2 or 3) and let ∂Ω be the boundary. Assuming the flow
to be incompressible and isothermal, the equations of the linearized problem we consider are:

ρa · ∇u−∇ ·T +∇p = f in Ω, (2.1)

∇ · u = 0 in Ω, (2.2)

where a is the advection velocity, ρ denotes the constant density, p : Ω→ R is the pressure field, u : Ω→ Rd

is the velocity field, f : Ω→ Rd is the force field and T : Ω→ Rd ⊗ Rd is the deviatoric extra stress tensor.
In general, T is defined in terms of a viscous and a viscoelastic contribution as

T = 2ηe∇su+ σ,

where ηe represents the effective viscosity (or solvent viscosity), ∇su is the symmetrical part of the velocity
gradient and σ is the viscoelastic or simply elastic stress tensor.

Finally, the constitutive equation for the viscoelastic stress tensor must be defined to close the problem.
Even if there is a wide range of different models, we consider the Oldroyd-B model in this work, which is the
model of a Newtonian stress supplemented with an extra-stress that satisfies the upper-convected Maxwell
equation. In the linearized version we consider it reads as

1

2ηp
σ −∇su+

λ

2ηp

(
a · ∇σ − σ · ∇a− (∇a)T · σ

)
= 0 in Ω, (2.3)
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where λ is the relaxation time and ηp represents the polymeric viscosity. Each term of the equation
has a particular meaning: ∇su is the source, λ

2ηp
a · ∇σ represents the linearized convective term and

λ
2ηp

(
σ · ∇a+ (∇aT ) · σ

)
are the linearized rotational terms. We write the polymeric and the effective vis-

cosity in function of the total viscosity η0; for that, an additional parameter β ∈ [0, 1] is introduced, so that
ηe = βη0 and ηp = (1− β)η0.

Calling U = [u, p,σ], F = [f , 0,0] and defining

Lst(U) :=


−∇ · σ − 2ηe∇ · (∇su) + ρa · ∇u+∇p

∇ · u
1

2ηp
σ −∇su+

λ

2ηp

(
a · ∇σ − σ · ∇a− (∇a)T · σ

)
 , (2.4)

we may write (2.1), (2.2) and (2.3) as

Lst(U) = F . (2.5)

The simplest boundary condition u = 0 on ∂Ω will be considered throughout.

2.2. The log-conformation reformulation

The log-conformation reformulation basically consists of a change of variables in terms of the matrix-
logarithm of the conformation tensor τ , defined from the expression

σ =
ηp
λ

(τ − I).

The conformation tensor is replaced by a new variable ψ = log(τ ), which can be calculated through an
eigenvalue computation that rotates the τ tensor into its main principle axes and can be expressed as ψ =

Rτ log(Λ)RT
τ because τ is a symmetric positive definite tensor and therefore it can always be diagonalized.

In the expression introduced, Λ is a diagonal matrix with the eigenvalues of τ , and Rτ is the orthogonal
matrix of the eigenvectors of τ . However, we have considered a modification when the conformation tensor is
defined, with the aim of allowing λ = 0, i.e., the Newtonian behavior. To this end, we introduce a modified
relaxation-time parameter λ0(λ), which can be defined as λ0 = max{kλ, λ0,min}, k > 0 being a constant and
λ0,min a given threshold. So, if k = 1 and λ0,min = 0, the original change of variables proposed in [4] is
recovered. It is worth to remark that in the numerical experiments we have found useful to take k small, so
that λ0 < λ; this has allowed us to obtain converged solutions that we have not been able to get for k = 1;
see [9].

Thus, we compute the modified conformation tensor, still denoted by τ , from the expression

σ =
ηp
λ0

(τ − I).

Again, the conformation tensor τ must be written as τ = exp(ψ) in the standard viscoelastic formulation
detailed above, (2.1), (2.2) and (2.3).

To motivate the linearized problem to be analyzed, let us consider a Newton-Raphson linearization. As-
sume ψ̂ is the result obtained from a certain iteration and we need to compute the correction δψ̂ = ψ − ψ̂.
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If this correction is small, we may approximate

exp(ψ) = exp(ψ̂) · exp(δψ) ≈ exp(ψ̂) · (I + δψ) = exp(ψ̂) ·ψ + exp(ψ̂) · (I − ψ̂). (2.6)

Since we consider exp(ψ̂) and ψ̂ known, we can denote these tensors as E = exp(ψ̂) and S = ψ̂, respectively,
and introduceR = E ·S−E. The linearized equations of the log-conformation formulation are now expressed
as follows:

−η0(1− β)

λ0
∇ · (E ·ψ −R)− 2βη0∇ · (∇su) + ρa · ∇u+∇p = f , (2.7)

∇ · u = 0, (2.8)

1

2λ0
(E ·ψ −R− I)−∇su

+
λ

2λ0

(
a · ∇ (E ·ψ −R)− (E ·ψ −R) · ∇a− (∇a)T · (E ·ψ −R) + 2∇su

)
= 0, (2.9)

where the unknowns are the velocity, the pressure, and tensor ψ. Note the presence of the last term 2∇su,
which will have a crucial role in the dependence of the error estimate to be obtained with the Weissenberg
number.

Let us introduce some notation, useful in the next subsections. Calling now U = [u, p,ψ] and defining

L(U) :=


− ηp
λ0
∇ · (E ·ψ)− 2βη0∇ · (∇su) + ρa · ∇u+∇p

∇ · u
1

2λ0
E ·ψ −∇su+

λ

2λ0
(a · ∇ (E ·ψ) − (E ·ψ) · ∇a− (∇a)T · (E ·ψ) + 2∇su

)
 , (2.10)

F :=


f − ηp

λ0
∇ ·R

0
1

2λ0
(I +R) +

λ

2λ0
(a · ∇R −R · ∇a− (∇a)T ·R

)
 =:

 fu

0

fψ

 , (2.11)

we may write (2.7)-(2.9) as

L(U) = F , (2.12)

which again needs to be supplied with the boundary condition u = 0 on ∂Ω.

2.3. Variational formulation

In order to write the weak form of the problem, let us introduce some notation. The space of square
integrable functions in a domain ω is denoted by L2(ω), and the space of functions whose distributional
derivatives of order up to m ≥ 0 (integer) belong to L2(ω) is denoted by Hm(ω). Essentially bounded
functions in ω are denoted by L∞(ω).

The space H1
0 (ω) is made up of functions in H1(ω) vanishing on ∂ω. The topological dual of H1

0 (ω) is
denoted by H−1(Ω), the duality pairing being 〈·, ·〉. The L2 inner product in ω (for scalars, vectors and
tensors) is denoted by (·, ·)ω and the integral over ω of the product of two general functions is written as
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〈·, ·〉ω, the subscript being omitted when ω = Ω. The norm in a space X is denoted by ‖ · ‖X , except when
X = L2(Ω), case in which the subscript is omitted.

Using this notation, the velocity and pressure spaces for the continuous problem are V = H1
0 (Ω)d and

Q = L2(Ω)/R, and the space for the tensor ψ is denoted by Υ ⊂ L2(Ω)d×d, with appropriate regularity to
make the following weak form well defined. This weak form consists in finding U = [u, p,ψ] ∈ X := V×Q×Υ

such that

ηp
λ0

(E ·ψ,∇sv) + 2(βη0∇su,∇sv)

+〈ρa · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉+
ηp
λ0

(R,∇sv), (2.13)

(q,∇ · u) = 0, (2.14)

1

2λ0
(E ·ψ,χ)− (∇su,χ) +

λ

2λ0
(a · ∇ (E ·ψ) ,χ)

+
λ

2λ0

(
−E ·ψ · ∇a− (∇a)T ·E ·ψ + 2∇su,χ

)
=

1

2λ0
(I +R,χ) +

λ

2λ0
(a · ∇R,χ) (2.15)

+
λ

2λ0

(
−R · ∇a− (∇a)T ·R,χ

)
, (2.16)

for all V = [v, q,χ] ∈ X , where it is assumed that f , R and E are such that the known terms are well
defined. In compact form, the problem can be written as:

B(U ,V ) = L(V ), (2.17)

where

B(U ,V ) =
ηp
λ0

(E ·ψ,∇sv) + 2(βη0∇su,∇sv) + 〈ρa · ∇u,v〉 − (p,∇ · v)

+ (∇ · u, q) +
1

2λ0
(E ·ψ,χ)− (∇su,χ)

+
λ

2λ0

(
a · ∇ (E ·ψ)−E ·ψ · ∇a− (∇a)T ·E ·ψ + 2∇su,χ

)
, (2.18)

L(V ) = 〈f ,v〉+
ηp
λ0

(R,∇sv) +
1

2λ0
(I +R,χ) +

λ

2λ0
(a · ∇R,χ)

+
λ

2λ0

(
−R · ∇a− (∇a)T ·R,χ

)
. (2.19)

Note that from the physical point of view the test function χ is a stress, whereas the dimensionless unknown
ψ is the logarithm of the conformation tensor. We could also have used a test function for the constitutive
equation of the form ηp

λ0
exp(χ), where now χ would be dimensionless. This would simplify the analysis

(some stability would follow taking χ = ψ), but complicate significantly the FE approximations described
below. Note that, strictly speaking, the space of stress test functions could be taken es the L2 projection
onto L2(Ω)d×d of functions of the form E · ϕ properly scaled, for example by a factor ηp

λ0
, with ϕ belonging

to the space of trial solutions.
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We will not analyze the continuous problem (2.17), but simply assume that there exists a solution that is
smooth enough. As for the standard formulation, this requires λ to be small enough and, in the case of the
linearization we consider, the following condition on the velocity a which will also be needed in the discrete
problem:

Assumption H1 a ∈ C0(Ω̄)d, ∇ · a = 0, a and ∇a have components in L∞(Ω).

E and R have components in L∞(Ω).

E is invertible with a bounded inverse.

2.4. Stability of the Galerkin finite element discretization

The standard Galerkin approximation for the variational problem, which has been established in (2.17),
is described next. Let Th = {K} be a FE partition of the domain Ω. The diameter of an element K ∈ Th is
denoted by hK and the diameter of the partition is defined as h = max{hK |K ∈ Th}. For simplicity, we will
consider quasi-uniform partitions in the following. The L2 norm in an element K will be denoted by ‖ · ‖K .

From Th we may construct conforming FE spaces for the velocity, the pressure and the elastic stress,
Vh ⊂ V , Qh ⊂ Q, Υh ⊂ Υ, respectively. Although any conforming approximation could be considered using
the approach to be described, and this means that pressures and stresses could be discontinuous (see [27]),
for conciseness we will restrict to continuous interpolations for these fields.

The condition that the convective derivative of the stress be square integrable will follow from H1 and
choosing the stresses continuous, for example. Calling X h := Vh×Qh×Υh, the Galerkin FE approximation
of the problem consists in finding Uh ∈ X h, such that:

Bψ(Uh,V h) = L(V h), (2.20)

for all V h = [vh, qh,χh] ∈ X h, where Bψ is obtained from B given in (2.18) replacing E ·ψh by Pψ(E ·ψh),
where Pψ is the L2 projection onto Υh.

As in the standard formulation, problem (2.20) lacks stability unless appropriate inf-sup conditions hold.
Likewise, convective terms are not bounded, and these may dominate those that can be controlled.

3. Stabilized finite element method

VMS methods consist in the splitting of the unknown U in a component Uh, which can be resolved by
the FE space, and the remainder Ũ , that will be called sub-grid scale. The framework is based on the work
by Hughes et al. [23]. In the context of a three field formulation for flow problems, see [14] and [32]. The
sub-grid scale needs to be approximated in a simple manner, with the goal of capturing its effect and yielding
a stable formulation. The particular approach we follow and the resulting stabilized finite element method
are described next.

3.1. Residual based stabilization

The problem we wish to approximate is (2.12) in differential form and (2.17) in variational form. After
introducing the subscale decomposition and integrating by parts, it can be readily checked (see [33]) that the
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VMS method leads to the problem of finding Uh ∈ X h such that

Bψ(Uh,V h) +
∑
K

〈Ũ ,L∗st(V h)〉K = L(V h), (3.1)

for all V h ∈ X h, where L∗st is the formal adjoint operator of Lst and Ũ is the sub-grid scale that needs to be
approximated. L∗st is given by

L∗st(V ) :=


∇ · χ− 2ηe∇ · (∇sv)− ρa · ∇v −∇q

−∇ · v
1

2ηp
χ+∇sv − λ

2ηp

(
a · ∇χ+ χ · (∇a)T +∇a · χ

)
 . (3.2)

The fact that the operator that appears after integration by parts is the adjoint of Lst and not of L is simply
due to the way in which we have written the equations, changing variables in the stress but not in the stress
test function.

Taking P̃ as the L2 projection onto the space of sub-grid scales, the approximation we consider for the
sub-grid scales within each element is

Ũ = αP̃ [F − L(Uh)], (3.3)

where α is a diagonal matrix of the form α = diag(αuId, αp, αψId×d) with Id the identity on vectors of Rd,
Id×d the identity on second order tensor and the parameters αu, αp and αψ computed as

αu =

[
c1
η0

h2
+ c2

ρ|a|
h

]−1

, (3.4)

αp =
h2

c1α1
, (3.5)

αψ =

[
c3

1

2ηp
+ c4

(
λ

2ηp

|a|
h

+
λ

ηp
|∇a|

)]−1

, (3.6)

where |a| is the Euclidean norm while |∇a| is the Frobenius norm. The dimensionless constants ci, i = 1, .., 4

are algorithmic parameters in the formulation, which have to be of order one [14].

3.2. Split-OSS

The Orthogonal Sub-grid Scale (OSS) stabilization [24, 25] consists in taking P̃ = P⊥h , where Ph is the
L2 projection onto X h. In this case, we can design a simplified method, which consists in keeping only the
terms of the form one operator term applied to the unknown by the same operator term applied to the test
function, thus neglecting the products of different operators [26]. We call Split-OSS method the resulting
stabilized formulation.

Following the considerations made in [28] for the construction of the Split-OSS method for the traditional
viscoelastic formulation, the modified method we propose for the log-conformation reformulation is: find
Uh ∈ X h such that

Bstab(Uh,V h) = Bψ(Uh,V h) +B∗(Uh,V h) = L(V h) (3.7)
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for all V h ∈ X h, where B∗(Uh,V h) represents the stabilizing part of the model, defined as

B∗(Uh,V h) = S⊥1 (Uh,V h) + S⊥2 (Uh,V h) + S⊥3 (uh;Uh,V h), (3.8)

where

S⊥1 (Uh,V h) =
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ[E ·ψh]

]
,−∇ · χh

〉
K

+
∑
K

αu

〈
P⊥u [∇ph],∇qh

〉
K

+
∑
K

αu

〈
P⊥u [ρa · ∇uh], ρa · ∇vh

〉
K
, (3.9)

S⊥2 (Uh,V h) =
∑
K

αp

〈
P⊥p [∇ · uh],∇ · vh

〉
K
, (3.10)

S⊥3 (Uh,V h) =
∑
K

αψ

〈
P⊥ψ [Rψ],−∇svh +

λ

2ηp

(
a · ∇χh + χh · (∇a)T +∇a · χh

) 〉
K
, (3.11)

and where Rψ is the residual of the constitutive equation

Rψ = −∇suh +
λ

2λ0

(
a · ∇Pψ[E ·ψh]− Pψ[E ·ψh] · ∇a− (∇a)T · Pψ[E ·ψh] + 2∇suh

)
.

The L2 projections onto the FE spaces for velocity (without boundary conditions), pressure and stress have
respectively been denoted by Pu, Pp and, as already mentioned, Pψ. The projection onto the velocity space
with boundary conditions will be denoted Pu,0.

The method is a mix of an orthogonal term-by-term formulation for the momentum equation and continuity
equation and a residual-based formulation for the constitutive equation. For smooth solutions, both have
an optimal convergence rate in h. However, in problems where the solution has strong gradients, we have
found (3.7) more robust, similarly to what it is explained in [28]. For a detailed motivation and numerical
experimentation using this method, see [9].

In the numerical analysis below we will also use the notation

Pψ[E ·ψh] · ∇a+ (∇a)T · Pψ[E ·ψh] = ψ̇
∗
h + ψ̇

∗∗
h ,

and
Pψ[E ·ψh] · (∇a)T +∇a · Pψ[E ·ψh] = ψ̇

∗
h − ψ̇

∗
h,

where ψ̇
∗
h = Pψ[E ·ψh] · ∇sa+∇sa · Pψ[E ·ψh] and ψ̇

∗∗
h = Pψ[E ·ψh] · ∇asa−∇asa · Pψ[E ·ψh]. In these

expressions, ∇asa represents the skew-symmetric part of the velocity gradient, given by

∇asa =
1

2

[
∇a− (∇a)

T
]
.
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4. Numerical analysis

4.1. Preliminaries

We assume that there is a constant cinv, independent of the mesh size h, such that

‖∇vh‖K ≤ cinvh
−1 ‖vh‖K , (4.1)

for all FE functions vh defined on K ∈ Th, which can be either scalars, vectors or tensors. We will also make
use of Korn’s inequality, which holds for the conforming approximation that we consider:

‖vh‖2H1(Ω) ≤ cL ‖∇
svh‖2 with vh = 0 on ∂Ω,

cL > 0 being a constant. As usual, C will denote a generic positive constant, possibly different at different
occurrences. A fixed constant will be identified with a subscript.

We will need a condition on the interpolating spaces that holds in the case of equal order interpolations,
and that can be written as [14,27]:

Assumption H2 Given a,vh ∈ Vh, qh ∈ Qh,ψh ∈ Υh and zh := ρa · ∇vh +∇qh −
ηp
λ0
∇ · Pψ[E ·ψh],

there holds ‖zh‖ ≤ cm
(
‖Pu,0 [zh]‖+

∥∥P⊥u [zh]
∥∥) , for a constant cm > 0.

For a piecewise linear velocity a this assumption is known to hold; here we assume that a is such that it is
satisfied.

4.2. Stability and convergence in a mesh-dependent norm

The norm in which the results will be first presented is

‖V h‖2W = 2ηe ‖∇svh‖2 +
ηp
λ2

0

‖Pψ[E ·ϕh]‖2 +
∑
K

αu

∥∥∥∥ρa · ∇vh +∇qh −
ηp
λ0
∇ · Pψ[E ·ϕh]

∥∥∥∥2

K

+
∑
K

αu
∥∥P⊥u [ρa · ∇vh]

∥∥2

K
+
∑
K

αu
∥∥P⊥u [∇qh]

∥∥2

K
+
∑
K

αu

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E ·ϕh]

]∥∥∥∥2

K

+
∑
K

αp ‖∇ · vh‖2K +
∑
K

αψ

∥∥∥∥ λ

2λ0
(a · ∇Pψ[E ·ϕh]− ϕ̇∗∗h )

∥∥∥∥2

K

, (4.2)

considering V h = [vh, qh,ϕh] ∈ X h (note again that ϕh is dimensionless).
To simplify the analysis, we shall consider that the stabilization parameters are constant, computed with

the L∞(Ω) norm of the advection velocity and its gradient. The analysis of variable stabilization parameters,
including non-uniform meshes, can be done using the techniques in [26].

The main stability result, which implies existence and uniqueness of discrete solutions, is the following:

Theorem 1. (Stability). Suppose that H1 and H2 hold. For λ small enough, there is a constant C > 0 such
that

inf
Uh∈Xh

sup
V h∈Xh

Bstab(Uh,V h)

‖Uh‖W ‖V h‖W
≥ C,
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provided the constants ci, i = 1, .., 4 defined in (3.4)-(3.6) are large enough.

Proof. Given Uh ∈ X h, consider Uh1 =
[
λ∗uh, λ

∗ph,
ηp
λ0
Pψ[E ·ψh]

]
, where λ∗ = λ−λ0

λ0
> 0. We assume that

λ > λ0,min, since the case of very small elasticity is easier to prove and it is not our focus. Now, using the
skew symmetry of the convective terms (from assumption H1), we obtain:

Bstab(Uh,Uh1) =Bψ(Uh,Uh1) +B∗(Uh,Uh1)

=
ηp
λ0
λ∗ (Pψ[E ·ψh],∇suh)︸ ︷︷ ︸

(1)

+2ηeλ
∗(∇suh,∇suh)

+
1

2λ0

ηp
λ0

(Pψ[E ·ψh], Pψ[E ·ψh])− ηp
λ0

(∇suh, Pψ[E ·ψh])︸ ︷︷ ︸
(1)

+
λ

2λ0

ηp
λ0

−Pψ[E ·ψh] · ∇a− (∇a)T · Pψ[E ·ψh]︸ ︷︷ ︸
(2)

+ 2∇suh︸ ︷︷ ︸
(1)

, Pψ[E ·ψh]


+
∑
K

αu

〈
P⊥u

[
ηp
λ0
∇ · Pψ[E ·ψh]

]
,
ηp
λ0
∇ · Pψ[E ·ψh]

〉
+
∑
K

αuλ
∗ 〈P⊥u [∇ph],∇ph

〉
+
∑
K

αuλ
∗ 〈P⊥u [ρa · ∇uh], ρa · ∇uh

〉
+
∑
K

αpλ
∗ 〈P⊥p [∇ · uh],∇ · uh

〉
+
∑
K

αψ

〈
P⊥ψ

[
λ∗∇suh +

λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗
h − ψ̇

∗∗
h

)]
,

−λ∗∇suh +
λ

2λ0

(
a · ∇Pψ[E ·ψh] + ψ̇

∗
h − ψ̇

∗∗
h

)〉
︸ ︷︷ ︸

(3)

.

Let us bound the terms in this expression. From now on, ε with a subscript will denote a constant resulting
from Young’s inequality, which will be repeatedly used together with Schwarz’s inequality. One can easily
obtain:

(1) ≥ −2ηpλ
∗
[

1

2ε0λ2
0

‖Pψ[E ·ψh]‖2 +
ε0

2
‖∇suh‖2

]
,

(2) ≥ −ληp
λ2

0

‖∇a‖L∞(Ω) ‖Pψ[E ·ψh]‖2 ,

(3) ≥ −(λ∗)2
∑
K

αψ ‖∇suh‖2K +
∑
K

αψ

(
λ

2λ0

)2 ∥∥∥P⊥ψ [a · ∇Pψ[E ·ψh]− ψ̇
∗∗
h

]∥∥∥2

K

−
∑
K

αψ

(
λ

2λ0

)2

4 ‖∇sa‖2L∞(K) ‖Pψ[E ·ψh]‖2K ,
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from where

Bstab(Uh,Uh1) ≥
∑
K

(
2ηeλ

∗ − ηpλ∗ε0 − (λ∗)2αψ
)
‖∇suh‖2K

+
∑
K

[
ηp
λ2

0

(
1− λ∗

ε0
− λ ‖∇a‖L∞(K)

)
− αψ

(
λ

2λ0

)2

4 ‖∇sa‖2L∞(K)

]
‖Pψ[E ·ψh]‖2K

+
∑
K

αu

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E ·ψh]

]∥∥∥∥2

K

+
∑
K

αu
∥∥P⊥u [λ∗∇ph]

∥∥2

K

+
∑
K

αu
∥∥P⊥u [λ∗ρa · ∇uh]

∥∥2

K
+
∑
K

αp
∥∥P⊥p [λ∗∇ · uh]

∥∥2

K

+
∑
K

αψ

(
λ

2λ0

)2 ∥∥∥∥P⊥ψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗∗
h

)]∥∥∥∥2

K

. (4.3)

Even if αu = αp = αψ = 0, this estimate yields some stability provided λ is small enough. In fact, this
would be the estimate for the Galerkin method, which is the same as for the continuous problem. For the
latter it would be possible to obtain pressure stability and stability for the velocity gradient through the
use of appropriate inf-sup conditions. In the discrete case, we will not use these, but we will see how the
stabilization terms allow us to prove the Theorem.

Let us introduce v1 ≡ Pu,0(ρa ·∇uh+∇ph− ηp
λ0
∇·Pψ[E ·ψh]) and consider V h1 = αuλ

∗ [v1, 0,0]. Taking
this test function, using Schwarz’s and Young’s inequalities and the inverse estimate (4.1) we get

Bstab(Uh,V h1) = Bψ(Uh,V h1) +B∗(Uh,V h1)

= B∗(Uh,V h1) +
∑
K

αuλ
∗
〈
ηp
λ0
Pψ[E ·ψh],∇sv1

〉
K

+
∑
K

αuλ
∗ 〈ρa · ∇uh,v1〉K

−
∑
K

αuλ
∗ 〈ph,∇ · v1〉K −

∑
K

αuλ
∗
[
ε1

2
‖v1‖2K +

1

2ε1
(2ηe)

2 c
2
inv
h2
‖∇suh‖2K

]
.

Integrating by parts the second and fourth terms and using the continuity assumed for the interpolation and
the advection velocity, we get

Bstab(Uh,V h1) ≥ B∗(Uh,V h1) +
(

1− ε1

2

)∑
K

αuλ
∗ ‖v1‖2K −

1

2ε1
(2ηe)

2 c
2
inv
h2

∑
K

αuλ
∗‖∇suh‖2K . (4.4)

Repeated application of Schwarz’s, Young’s and the inequality ‖a + b + c‖2 ≤ 4 ‖a‖2 + 4 ‖b‖2 + 2 ‖c‖2 and
the inverse estimate (4.1) allow us to bound the stabilizing terms, and obtain:

Bstab(Uh,V h1) ≥ λ∗
∑
K

αuCu‖v1‖2K − λ
∗
∑
K

αu

(
1

ε1
2η2
eαu

c2inv
h2

+
1

ε4
αψ (λ∗)

2

)
‖∇suh‖2K

− 1

2ε2
λ∗
∑
K

α2
u ‖a‖L∞(K)

ρ

h

∥∥P⊥u [ρa · ∇uh]
∥∥2

K
− 1

2ε3
λ∗
∑
K

αp
∥∥P⊥p [∇ · uh]

∥∥2

K

− 4
1

2ε4
λ∗
∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0
(a · ∇Pψ[E ·ψh]−ψ∗∗h )

]∥∥∥∥2

K
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− 4
1

2ε4
λ∗
∑
K

αψ

(
λ

2λ0

)2

4 ‖∇sa‖2L∞(K) ‖Pψ[E ·ψh]‖2K , (4.5)

where
Cu := 1− ε1

2
− c2invαu

[ε2

2
‖a‖L∞(K)

ρ

h
+
ε3

2

αp
h2

+
ε4

2

αψαu
h2

]
,

and εi, i = 2, 3, 4 come again from different instances of the application of Young’s inequality.
Let us consider now the test function V h2 = αpλ

∗ [0, q2,0], with q2 ≡ Pp[∇ ·uh]. Using the same tools as
above we get

Bstab (Uh,V h2) ≥ λ∗
∑
K

αpCp ‖Pp[∇ · uh]‖2K − λ
∗
∑
K

αu
ε5

2

∥∥P⊥u [∇ph]
∥∥2

K
, (4.6)

where

Cp := 1− 1

2ε5
αpαu

c2inv
h2

.

The next step is to consider the test function V h3 = αψ [0, 0,ψ3], with

ψ3 ≡ Pψ
(
λ∗∇suh +

λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗
h − ψ̇

∗∗
h

))
.

The process of bounding Bstab(Uh,V h3) is similar to that of bounding Bstab(Uh,V h1). Again, one has to
apply repeatedly the same inequalities as before. Most details will be omitted.

Bounding first the Galerkin terms one gets:

Bstab(Uh,V h3) ≥ B∗(Uh,V h3)− 1

2λ2
0

∑
K

1

2ε6
‖Pψ[E ·ψh]‖2K −

1

2λ2
0

∑ ε6

2
αψ‖ψ3‖

2
K

+
∑
K

αψ

(
1− 1

ε7
− 1

ε8

)
‖Pψ[λ∗∇suh]‖2K

+
∑
K

αψ (1− ε8 − ε9)

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

+
∑
K

αψ

(
1− ε7 −

1

ε9

)∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗∗
h

)]∥∥∥∥2

K

, (4.7)

whereas for the stabilization terms one can get

B∗(Uh,V h3) ≥ −
∑
K

αu

(
ηp
λ0

)2 [
1

2ε10

∥∥P⊥u [∇ · Pψ[E ·ψh]]
∥∥2

K

]
− 2

1

2ε11

∑
K

αψ
∥∥P⊥ψ [λ∗∇suh]

∥∥2

K

− 4
1

2ε11

∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗∗
h

)]∥∥∥∥2

K

− 4
1

2ε11

∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

−
∑
K

αψ

ε10

2

c2inv
h2

αψαu +
ε11

2

{
4α2

ψ

(
λ

2ηp

‖a‖L∞(K)

h

)2



14 TITLE WILL BE SET BY THE PUBLISHER

+4α2
ψ

(
λ

2ηp
‖∇sa‖L∞(K)

)2

+ 2α2
ψ

(
λ

2ηp
‖∇asa‖L∞(K)

)2
}]
‖ψ3‖

2
K . (4.8)

Let us introduce the constant

Cψ :=
1

2ηp

ε6

2
αψ +

ε10

2

c2inv
h2

αψαu

+
ε11

2

{
4α2

ψ

(
λ

2ηp

‖a‖L∞(K)

h

)2

+ 4α2
ψ

(
λ

2ηp
‖∇sa‖L∞(K)

)2

+ 2α2
ψ

(
λ

2ηp
‖∇asa‖L∞(K)

)2
}

(4.9)

and consider the inequality

‖ψ3‖
2
K ≥ −2 ‖Pψ[λ∗∇suh]‖2 − 4

∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗∗
h

)]∥∥∥∥2

− 4

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

.

Now using (4.8) in (4.7) we obtain:

Bstab(Uh,V h3) ≥− 1

2λ0

∑
K

αψ
1

2ε6
‖Pψ[E ·ψh]‖2K +

∑
K

αψ

(
1− 1

ε7
− 1

ε8
− 2Cψ

)
‖Pψ[λ∗∇suh]‖2K

+
∑
K

αψ (1− ε8 − ε9 − 4Cψ)

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

+
∑
K

αψ

(
1− ε7 −

1

ε9
− 4Cψ

)∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗∗
h

)]∥∥∥∥2

K

− 1

2ε10

∑
K

αu

(
ηp
λ0

)2 ∥∥P⊥u [∇ · Pψ[E ·ψh]]
∥∥2

K
− 2

1

2ε11

∑
K

αψ
∥∥P⊥ψ [λ∗∇suh]

∥∥2

K

− 4
1

2ε11

∑
K

αψ

∥∥∥∥P⊥ψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗∗
h

)]∥∥∥∥2

K

− 4
1

2ε11

(
λ

2λ0

)2∑
K

αψ4 ‖∇sa‖2L∞(K) ‖Pψ[E ·ψh]‖2K . (4.10)

It can be checked that the constants εi, i = 1, .., 11 arising from Young’s inequality can be taken such that

Cu > 0, Cp > 0, Cψ > 0,

where Cu, Cp and Cψ are given in (4.2), (4.2) and (4.9), respectively.
Lastly, let us consider V h = Uh1 + θ1 V h1 + θ2 V h2 + θ3 V h3. The parameters θi can be chosen small

enough so as to obtain, from (4.5), (4.6) and (4.10):

Bstab(Uh,V h) ≥ 2ηe
∑
K

C1 ‖∇suh‖2K +
ηp
λ2

0

∑
K

C2 ‖Pψ[E ·ψh]‖2K

+
∑
K

αuC3

∥∥∥∥Pu,0 [ρa · ∇uh + Pψ −
ηp
λ0
∇ · Pψ[E ·ψh]

]∥∥∥∥2

K
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+
∑
K

αuC4

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E ·ψh]

]∥∥∥∥2

K

+
∑
K

αuC5

∥∥P⊥u [∇ph]
∥∥2

K

+
∑
K

αuC6

∥∥P⊥u [ρa · ∇uh]
∥∥

+
∑
K

αpC7

∥∥P⊥p [∇ · uh]
∥∥2

K
+
∑
K

αpC8 ‖Pp[∇ · uh]‖2

+
∑
K

αψC9

∥∥∥∥P⊥ψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗∗
h

)]∥∥∥∥2

K

+
∑
K

αψC10

∥∥∥∥Pψ [ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗∗
h

)]∥∥∥∥2

K

+
∑
K

αψC11 ‖Pψ[∇suh]‖2K +
∑
K

αψC12

∥∥∥∥Pψ [ λ

2λ0
ψ̇
∗
h

]∥∥∥∥2

K

, (4.11)

with the various constants appearing in this expression given by

C1 = λ∗ − ηpε0λ
∗

2ηe
− (λ∗)2αψ

2ηe
− θ1λ

∗αu
2ηe

(
1

2ε1
(2ηe)

2
αu
c2inv
h2

+ 2
1

2ε4
(λ∗)

2
αψ

)
− θ3αψ

2ηe
2
ηp
λ0

1

2ε11
(λ∗)

2
,

C2 =

(
1− λ∗

ε0
− λ

λ0
‖∇a‖L∞(K)

)
− λ2

0

ηp
αψ

(
λ

2λ0

)2

4 ‖∇sa‖2L∞(K)

(
1− θ14

1

2ε4
λ∗
)

− θ3
λ2

0

ηp

(
1

2λ0

1

2ε6
+ 4

1

2ε11

(
λ

2λ0

)2

αψ4 ‖∇sa‖2L∞(K)

)
,

C3 = λ∗θ1Cu = λ∗θ1

(
1− ε1

2
− c2invαu

[ε2

2
‖a‖L∞(K)

ρ

h
+
ε3

2

αp
h2

+
ε4

2

αψ
h2
αu

])
,

C4 = 1− θ3
1

2ε10
,

C5 = λ∗
(

1− ε5

2
θ2

)
,

C6 = (λ∗)
2

(
1− λ∗θ1

1

2ε2
αu ‖a‖L∞(K)

ρ

h

)
,

C7 = λ∗
(
λ∗ − θ1

1

2ε3

)
,

C8 = λ∗θ2Cp = λ∗θ2

(
1− 1

2ε5
αpαu

c2inv
h2

)
,

C9 = 1− 4
1

2ε4
λ∗ − θ34

1

2ε11
,

C10 = θ3

(
1− ε7 −

1

ε9
− 4Cψ

)
,

C11 = θ3

(
1− 1

ε7
− 1

ε8
− 2Cψ

)
,

C12 = θ3 (1− ε8 − ε9 − 4Cψ) ,

all positive for λ small enough and the constants ci of the stability parameters large enough, and bounded
by virtue of Assumption H2.
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Comparing the terms in the right-hand-side of (4.11) and the definition (4.2), it is seen that the former
bounds

∥∥∥Pu,0 [ρa · ∇uh +∇ph − ηp
λ0
∇ · Pψ[E ·ψh]

]∥∥∥ and
∥∥∥P⊥u [ρa · ∇uh +∇ph − ηp

λ0
∇ · Pψ[E ·ψh]

]∥∥∥. As-

sumption H2 allows us to guarantee that it also bounds
∥∥∥ρa · ∇uh +∇ph − ηp

λ0
∇ · Pψ[E ·ψh]

∥∥∥. Therefore,
for each Uh we have found V h such that

Bstab(Uh,V h) ≥ C ‖Uh‖2W .

In fact, it is seen from (4.11) that we could have included term αψC12

∥∥∥Pψ [ λ
2λ0
ψ̇
∗
h

]∥∥∥2

in the working norm,
which gives control on the FE part of Pψ[E · ψh] · ∇sa +∇sa · Pψ[E · ψh]. On the other hand, it is easily
checked that ‖V h‖W ≤ C ‖Uh‖W ; we will omit the immediate proof. Using this fact we have shown that for
each Uh ∈ X h there exist V h ∈ X h such that

Bstab(Uh,V h) ≥ C ‖Uh‖W ‖V h‖W ,

from where theorem follows. �

Now, we will define the error function of the method. Let us consider a FE space Wh, made of piecewise
continuous polynomial functions of degree kv. Given a function v ∈ Hk′v+1(Ω), for i = 0, 1 the interpolation
errors εi(v) are defined as

inf
vh∈Wh

∑
K

‖v − vh‖Hi(K) ≤ Ch
k′′v +1−i

∑
K

‖v‖
Hk
′′
v +1(K)

=:
∑
K

εi,K(v) =: εi(v),

where k′′v = min(kv, k
′
v). We will denote from this point by ṽh the best approximation of v in Wh. Note that

ε0(v) = hε1(v). In the case of v = ψ, it is understood that εi(ψ) := infψh∈Υh

∑
K ‖E ·ψ −E ·ψh‖Hi(K).

The objective of what follows is to show that the error function of the method we propose is:

E(h) :=
√
η0ε1(u) +

√
η0

∑
K

√
ReKε1,K(u) +

√
η0

λ0
ε0(ψ) +

√
η0

λ0

∑
K

√
WeKε0,K(ψ) +

1
√
η0
ε0(p), (4.12)

where

ReK :=
ρ ‖a‖L∞(K) h

η0
, WeK :=

λ ‖a‖L∞(K)

h

are the element (or cell) Reynolds and Weissenberg numbers, respectively.
At this point, a very important remark is needed. In [27] it is proved that the FE method proposed for

the standard formulation of the viscoelastic flow problem is stable and has an error function similar to (4.12)
but with a major difference: now the term that accounts for the error of the logarithm of the conformation
tensor has a factor λ−1

0 in front. This is a very important improvement, as the growth of the error with the
elasticity of the flow will be significantly reduced in the log-conformation formulation with respect to the
standard one. Obviously, the growth of the error with the element Reynolds number is the same.
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Lemma 2. (Consistency) Let U ∈ X be the solution of the continuous problem and Uh ∈ X h the FE
solution. If f ∈ Vh and U is regular enough, so that Bstab(U ,V h) is well defined, then

Bstab(U −Uh,V h) ≤ CE(h) ‖V h‖W , (4.13)

for all V h ∈ X h, where E(h) is defined by (4.12).

Proof. Galerkin terms do not contribute to the consistency error. In addition, the contribution of the con-
stitutive and the continuity equations in the stabilization terms are residual based, therefore the consistency
is satisfied by construction. Therefore we only have to show as S⊥1 has consistency error bounded as the
Lemma indicates. This is proved from the fact that the orthogonal projection P⊥ onto an appropriate FE
space satisfies

∥∥P⊥(v)
∥∥ ≤ Cε0(v) for any function v. Details are omitted. �

To show that the interpolation error is also E(h) we require a technical assumption that states that for any
element χh ∈ Υh, E · χh is close to a finite element function and its derivatives are close to the derivatives
of a finite element function. Note that if χh is a stress, we may scale it by λ0

ηp
to make it dimensionless. The

condition we need may be expressed as follows:

Assumption H3 For all χh ∈ Υh ifM is a bounded linear operator of χh and ∇χh, there holds

‖M(χh,∇χh)‖K ≤ C ‖M(Pψ[E · χh],∇Pψ[E · χh])‖K , K ∈ Th.

Lemma 3. (Interpolation error) Let U ∈ X be the solution of the continuous problem, assumed to be regular
enough, and Ũh ∈ X h its best FE approximation. Then, under assumption H3, the following estimates hold:

Bstab(U − Ũh,V h) ≤ CE(h)‖V h‖W , (4.14)

‖U − Ũh‖W ≤ CE(h). (4.15)

Proof. Set eu = u− ũh; ep = p− p̃h and eψ = ψ − ψ̃h. Firstly we will prove inequality (4.15):

∥∥∥U − Ũh

∥∥∥2

W
= 2ηe ‖∇seu‖2 +

ηp
λ2

0

‖Pψ[E · eψ]‖2 +

(1)︷ ︸︸ ︷∑
K

αu

∥∥∥∥ρa · ∇eu +∇ep −
ηp
λ0
∇ · Pψ[E · eψ]

∥∥∥∥2

K

+
∑
K

αu
∥∥P⊥u [ρa · ∇eu]

∥∥2

K︸ ︷︷ ︸
(2)

+
∑
K

αu
∥∥P⊥u [∇ep]

∥∥2

K︸ ︷︷ ︸
(3)

+
∑
K

αu

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E · eψ]

]∥∥∥∥2

K︸ ︷︷ ︸
(4)

+
∑
K

αp ‖∇ · eu‖2K︸ ︷︷ ︸
(5)

+
∑
K

αψ

∥∥∥∥ λ

2λ0

(
a · ∇Pψ[E · eψ]− ė∗∗ψ

)∥∥∥∥2

K︸ ︷︷ ︸
(6)

,

where

(1) ≤
∑
K

αu

(
2 ‖ρa · ∇eu‖2K + 2 ‖∇ep‖2K +

∥∥∥∥ ηpλ0
∇ · Pψ[E · eψ]

∥∥∥∥2

K

)
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≤
∑
K

αu

(
2ρ2 ‖a‖2L∞(K) ε

2
1(u) +

2

h2
ε2

0 (p) +
1

h2

η2
p

λ2
0

ε2
0(ψ)

)
,

(2) ≤
∑
K

αuρ
2 ‖a‖2L∞(K) ε

2
1(u),

(3) ≤
∑
K

αu
1

h2
ε2

0 (p) ,

(4) ≤
∑
K

αu
1

h2

η2
p

λ2
0

ε2
0(ψ),

(5) ≤
∑
K

αpε
2
1(u),

(6) ≤
∑
K

αψ

((
λ

2λ0

)2

‖a‖2L∞(K)

1

h2
ε2

0(ψ) +

(
λ

2λ0

)2

2 ‖∇asa‖2L∞(K) ε
2
0(ψ)

)
.

Estimate (4.15) follows form the definitions of the error function and the expression of the stabilization
parameters.

Now we will prove (4.14). Taking V h = [vh, qh,χh], we get:

Bstab

(
U − Ũh,V h

)
=
ηp
λ0

(Pψ[E · eψ],∇svh) + 2ηe (∇seu,∇svh) + 〈ρa · ∇eu,vh〉 − (ep,∇ · vh)

+ (∇ · eu, qh) +
1

2λ0
(Pψ[E · eψ],χh)− (∇seu,χh)

+
λ

2λ0

(
a · ∇Pψ[E · eψ] + 2∇seu − Pψ[E · eψ] · ∇a− (∇a)

T · Pψ[E · eψ],χh

)
+
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ[E · eψ]

]
,−∇ · χh

〉
K

+
∑
K

αu
〈
P⊥u [∇ep] ,∇qh

〉
K

+
∑
K

αu
〈
P⊥u [ρa · ∇eu] , ρa · ∇vh

〉
K

+
∑
K

αp
〈
P⊥p [∇ · eu],∇ · vh

〉
K

+
∑
K

αψ

〈
P⊥ψ

[
∇seu +

λ

2λ0

(
a · ∇Pψ[E · eψ]− Pψ[E · eψ] · ∇a− (∇a)

T · Pψ[E · eψ]
)]
,

−∇svh +
λ

2ηp

(
a · ∇χh + χh · (∇a)

T
+∇a · χh

)〉
K

.

Using Schwarz’s inequality, integrating by parts the convective term and the continuity equation and using
the inverse estimate (4.1) and assumption H3, we get:

Bstab(U − Ũh,V h) ≤ ηp
λ0
ε0(ψ) ‖∇svh‖+ 2ηeε1 (u) ‖∇svh‖+ ε0(p) ‖∇ · vh‖

+ hε1 (u) ‖ρa · ∇vh +∇qh −∇ · Pψ [E · χh]‖

+

(
1

2λ0
ε0(ψ) + (2 + k−1)ε1(u)

)
‖Pψ [E · χh]‖

+
ηp
λ0
ε0(ψ)

∑
K

∥∥∥∥ λ

2ηp

(
a · ∇Pψ [E · χh] + Pψ [E · χh] · (∇a)

T
+∇a · Pψ [E · χh]

)∥∥∥∥
K
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+
∑
K

αu
ηp
λ0

1

h
ε0 (ψ)

∥∥P⊥u [∇ · Pψ [E · χh]]
∥∥
K

+
∑
K

αu
1

h
ε0 (p)

∥∥P⊥u [∇qh]
∥∥
K

+
∑
K

αuρ ‖a‖L∞(K) ε1 (u)
∥∥P⊥u [ρa · ∇vh]

∥∥
K

+
∑
K

αpε1 (u) ‖∇ · vh‖K +
∑
K

αψε1(u) ‖∇svh‖K

+
∑
K

αψε1(u)

∥∥∥∥ λ

2ηp

(
a · ∇Pψ [E · χh] + Pψ [E · χh] · (∇a)

T
+∇a · Pψ [E · χh]

)∥∥∥∥
K

+
∑
K

αψε0(ψ)
λ

2λ0

(
‖a‖L∞(K)

h
+ 2 ‖∇a‖L∞(K)

)
(
‖∇svh‖K +

∥∥∥∥ λ

2ηp

(
a · ∇Pψ [E · χh] + Pψ [E · χh] · (∇a)

T
+∇a · Pψ [E · χh]

)∥∥∥∥
K

)
,

where we have used that λ0 = kλ (again, the case λ small is easier). The results follows reorganizing terms,
using the expressions of the stabilization parameters and of ηe and ηp in terms of η0. �

Theorem 4. (Convergence) Let U = [u, p,ψ] ∈ X be the solution of the continuous problem, and suppose
that the assumptions of Theorem 1 and Lemma 3 hold. Then there exist a constant C > 0 such that

‖U −Uh‖W ≤ CE(h).

Proof. The proof is standard, the only particular point being the weak consistency of the method (see,
e.g., [27]). �

4.3. Stability and convergence in natural norms

The next results search prove stability and convergence in a natural norm, in other words, in the norm of
the space of the continuous problem, which is not a mesh dependent norm. Since this natural norm does not
include any control on the convective terms, stability and convergence in this norm is only meaningful in the
case of small cell Reynolds numbers and Weissenberg numbers. In the following, and contrary to what we
have been considering up to this point, generic constants C may depend on these numbers and explode as
they increase.

Theorem 5. (Stability and convergence in natural norms). Suppose that the assumptions of Theorem 1 hold
and the cell Reynolds numbers and cell Weissenberg numbers are small. Then, the solution of the discrete
problem Uh = [uh, ph,ψh] ∈ X h can be bounded as

√
η0 ‖uh‖H¹(Ω) +

√
η0

λ0
‖Pψ[E ·ψh]‖+

1
√
η0
‖ph‖ ≤ C

(
1
√
η0
‖fu‖H−1(Ω) +

λ0√
η0

∥∥fψ∥∥) . (4.16)

Moreover, under the assumptions of Theorem 4, if the solution of the continuous problem U = [u, p,ψ] ∈ X
is regular enough, the following error estimate holds:

√
η0 ‖u− uh‖H¹(Ω) +

√
η0

λ0
‖E ·ψ − Pψ[E ·ψh]‖+

1
√
η0
‖p− ph‖ ≤ CE(h). (4.17)
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Proof. Firstly we will prove (4.16). We have that

Bstab (Uh,V h) = 〈fu,vh〉+
〈
fψ,χh

〉
≤ C

(
1
√
η0
‖fu‖H−1(Ω)

√
η0 ‖vh‖H¹(Ω) +

√
η0

∥∥fψ∥∥ √η0

λ0

∥∥∥∥Pψ [λ0

η0
E · χh

]∥∥∥∥)
≤ C

(
1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥) ‖V h‖W ,

where V h = [vh, qh,χh] is arbitrary. Therefore, from the inf-sup condition proved in Theorem 1 we have

C ‖Uh‖W ‖V h‖W ≤ Bstab (Uh,V h) ≤ C
(

1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥) ‖V h‖W ,

and this implies that

‖Uh‖W ≤ C
(

1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥) .
Therefore:

‖Uh‖2W = 2βη0 ‖∇suh‖2K +
η0 (1− β)

λ2
0

‖Pψ[E ·ψh]‖2K +
∑
K

αu

∥∥∥∥ρa · ∇uh +∇ph −
ηp
λ0
∇ · Pψ[E ·ψh]

∥∥∥∥2

K

+
∑
K

αu
∥∥P⊥u [ρa · ∇uh]

∥∥2

K
+
∑
K

αu
∥∥P⊥u [∇ph]

∥∥2

K
+
∑
K

αu

∥∥∥∥P⊥u [ ηpλ0
∇ · Pψ[E ·ψh]

]∥∥∥∥2

K

+
∑
K

αp ‖∇ · uh‖2K +
∑
K

αψ

∥∥∥∥ λ

2λ0

(
a · ∇Pψ[E ·ψh]− ψ̇

∗∗
h

)∥∥∥∥2

K

≤ C
(

1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥) . (4.18)

Now, using the inverse inequality, we can write:

∑
K

αu ‖ρa · ∇uh +∇ph‖2K ≤
∑
K

αu

∥∥∥∥ρa · ∇uh +∇ph −
ηp
λ0
∇ · Pψ[E ·ψh]

∥∥∥∥2

K

+
∑
K

αu
cinvη0

λ0

(
(1− β)

h

)2
η0

λ0
‖Pψ[E ·ψh]‖2K .

In this expression we only have control on ρa · ∇uh +∇ph. There is the possibility of bounding the pressure
gradient making use of the control over the viscous term, since

∑
K

αu ‖∇ph‖2K ≤
∑
K

αu ‖ρa · ∇uh +∇ph‖2K +
∑
K

αu
η0

h2

(
ρ ‖a‖L∞(K) h

η0

)2

‖∇uh‖2K .
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Note that this expression explodes with the cell Reynolds number ReK . Then, from inequality (4.18), and
using Korn’s inequality, the expression of αu and taking into account that 0 < β < 1, we obtain:

η0 ‖uh‖2H1(Ω) +
η0

λ2
0

‖Pψ[E ·ψh]‖2 +
h2

η0

∑
K

‖∇ph‖2K ≤ C
(

1
√
η0
‖fu‖H−1(Ω) +

√
η0

∥∥fψ∥∥)2

.

For the L2 stability for the pressure we rely on the inf-sup condition between the velocity and pressure spaces
that holds for the continuous problem. See the details in [14].

Now we will prove (4.17). Theorem 4 implies that ‖U −Uh‖W ≤ CE(h), and consequently we have that

η0 ‖u− uh‖2H1(Ω) +
η0

λ2
0

‖E ·ψ − Pψ[E ·ψh]‖2

+
∑
K

αu

∥∥∥∥ρa · ∇ (u− uh) +∇ (p− ph)− η0 (1− β)

λ0
∇ · (E ·ψ − Pψ[E ·ψh])

∥∥∥∥2

K

≤ E2(h).

Now we will follow the same procedure as the used to prove stability; assuming the cell Reynolds number to
be small, we get

∑
K

αu ‖ρa · ∇ (u− uh) +∇ (p− ph)‖2K

≤
∑
K

αu

∥∥∥∥ρa · ∇ (u− uh) +∇ (p− ph)− η0 (1− β)

λ0
∇ · (E ·ψ − Pψ[E ·ψh])

∥∥∥∥2

K

+
∑
K

αu
η0

λ2
0

(
(1− β)

h

)2

η0ε
2
0,K(ψ),

and following the same reasoning

∑
K

αu ‖∇ (p− ph)‖2K ≤
∑
K

αu ‖ρa · ∇ (u− uh) +∇ (p− ph)‖2K +
∑
K

αu
η0

h2

(
ρ ‖a‖L∞(K) h

η0

)2

ε2
1,K(u).

So, we obtain

η0 ‖u− uh‖2H1(Ω) +
η0

λ2
0

‖E ·ψ − Pψ[E ·ψh]‖2 +
h2

η0

∑
K

‖∇ (p− ph)‖2K ≤ CE
2(h).

The error estimate to include the L2 norm of the pressure error can be obtained following the reasoning
indicated in [14]. �

Theorem 6. (L2 error estimate for the velocity). Suppose that the assumptions of Theorem 5 hold and the
continuous problem satisfies the elliptic regularity condition

√
η0 ‖u‖H2(Ω) +

√
η0

λ0
‖E ·ψ‖H1(Ω) +

1
√
η0
‖p‖H1(Ω) ≤ C

1
√
η0
‖fu‖ . (4.19)
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Then

√
η0 ‖u− uh‖ ≤ Ch

(
√
η0 ‖u− uh‖H¹(Ω) +

√
η0

λ0
‖E ·ψ − Pψ[E ·ψh]‖+

1
√
η0
‖p− ph‖

)
.

Proof. Let [ω, π,S] ∈ X be the solution of the following adjoint problem:

∇ · S − 2βη0∆ω − ρa · ∇ω −∇π =
η0

`2
(u− uh) , (4.20)

−∇ · ω = 0, (4.21)

1

2η0(1− β)
S +∇sω − λ

2η0(1− β)

(
a · ∇S + S · (∇a)

T
+∇a · S

)
= 0, (4.22)

with ω = 0 on ∂Ω and where ` is a characteristic length scale of the problem that has only been introduced
to keep the dimensionality. Let also [ω̃h, π̃h, S̃h] be the best approximation to [ω, π,S] in X h. Testing (4.20)
with u− uh, (4.21) with p− ph and (4.22) with ψ −ψh, we can obtain the next expression:

η0

`2
‖u− uh‖2 = Bψ ([u− uh, p− ph,ψ −ψh], [ω, π,S])

= Bstab ([u− uh, p− ph,ψ −ψh], [ω, π,S])

−
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ [E ·ψ −E ·ψh]

]
, P⊥u [−∇ · S]

〉
K

−
∑
K

αu
〈
P⊥u [∇ (p− ph)] , P⊥u [∇π]

〉
K
−
∑
K

〈
P⊥u [ρa · ∇ (u− uh)] , P⊥u [ρa · ∇ω]

〉
K

−
∑
K

αp
〈
P⊥p [∇ · (u− uh)] , P⊥p [∇ · ω]

〉
K

−
∑
K

αψ

〈
−∇s (u− uh) +

λ

2λ0
(a · ∇Pψ [E ·ψ −E ·ψh]− Pψ [E ·ψ −E ·ψh] · ∇a

− (∇a)
T · Pψ [E ·ψ −E ·ψh]

)
,−∇sω +

λ

2ηp

(
a · ∇S + S · (∇a)

T
+∇a · S

)〉
K

, (4.23)

where we have used the definition of Bstab in (3.7). The fifth and sixth terms of (4.23) are zero because of
(4.21) and (4.22), respectively. Therefore only four terms need to be bounded. Considering (3.9), these can
be written as follows

η0

`2
‖u− uh‖2 = Bstab ([u− uh, p− ph,ψ −ψh], [ω, π,S])

−
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ [E ·ψ −E ·ψh]

]
, P⊥u [−∇ · S]

〉
K

−
∑
K

αu
〈
P⊥u [∇ (p− ph)] , P⊥u [∇π]

〉
K
−
∑
K

〈
P⊥u [ρa · ∇ (u− uh)] , P⊥u [ρa · ∇ω]

〉
K

(4.24)

Using the interpolation properties and the shift assumption (4.19) it follows that

‖ω − ω̃h‖H¹(Ω) ≤ Ch ‖ω‖H2(Ω) ≤ Ch
1

`2
‖u− uh‖ ,
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η0

`2
‖u− uh‖ ,

‖π − π̃h‖ ≤ Ch ‖π‖H1(Ω) ≤ Ch
η0

`2
‖u− uh‖ .

From these expressions we obtain

Bstab ([u− uh, p− ph,ψ −ψh], [ω, π,S])

= Bstab

(
[u− uh, p− ph,ψ −ψh], [ω − ω̃h, π − π̃h,S − S̃h]

)
−
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ [E ·ψ −E ·ψh]

]
, P⊥u

[
−∇ ·

(
S − S̃h

)]〉
K︸ ︷︷ ︸

(2)

−
∑
K

αu
〈
P⊥u [∇ (p− ph)] , P⊥u [∇ (π − π̃h)]

〉
K︸ ︷︷ ︸

(3)

−
∑
K

〈
P⊥u [a · ∇ (u− uh)] , P⊥u [a · ∇ (ω − ω̃h)]

〉
K︸ ︷︷ ︸

(4)

.

Considering these inequalities we can bound terms (2)–(4) easily:

(2) ≤
∑
K

αu
ηp
λ0

1

h
‖Pψ [E ·ψ −E ·ψh]‖K

η0

`2
‖u− uh‖K

≤
∑
K

αu
ηp
λ0

1

h
‖E ·ψ − Pψ[E ·ψh]‖K

η0

`2
‖u− uh‖K ,

(3) ≤
∑
K

αu
1

h
‖p− ph‖K

η0

`2
‖u− uh‖K ,

(4) ≤
∑
K

αu

(
ρ ‖a‖L∞(K)

)2 h

`2
‖u− uh‖K ‖u− uh‖H1(Ω) .

We have to bound the terms of

Bstab

(
[u− uh, p− ph,ψ −ψh], [ω − ω̃h, π − π̃h,S − S̃h]

)
,

for which similar techniques to those used before. Finally, combining the bounds obtained in (4.24) yields:

η0

l2
‖u− uh‖2 ≤ h

√
η0

`2
‖u− uh‖

(
√
η0 ‖u− uh‖H1(Ω) +

∑
K

(
ρ ‖a‖L∞(K)

η0

)
√
η0 ‖u− uh‖H1(K)

+

√
η0

λ0
‖E ·ψ − Pψ[E ·ψh]‖K +

√
η0

λ0

∑
K

(
λ ‖a‖L∞(K)

h

)
‖E ·ψ − Pψ[E ·ψh]‖K

+
1
√
η0
‖p− ph‖K

)
,

and theorem follows. Note again that the bound obtained explodes with the cell Reynolds and the cell
Weissenberg numbers. �
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5. Conclusions

In this paper we have analyzed the finite element formulation proposed in [9] applied to a linearized form
of the logarithmic reformulation of the viscoelastic flow problem. A similar analysis was done in [27] for the
standard formulation, and thus the present paper can be considered a follow-up of the latter. Despite the
linearization and the various assumptions that have been needed in our analysis, it serves to draw two main
conclusions. The first is that the finite element formulation proposed is effective as stabilization technique,
as it allows one to use arbitrary interpolations for all variables in play (we have considered for simplicity the
case of continuous interpolations) and yields optimal error estimates, both in the stabilized norm and in the
natural norm of the problem, in the spaces in which the continuous problem is posed. The second conclusion
is that the logarithmic reformulation has a significantly better behavior in terms of the Weissenberg number
than the standard one, with an error estimate that deteriorates much more slowly when this number increases;
this provides some theoretical foundation to justify the use of the logarithmic reformulation to attempt the
HWNP, at least using the FE formulation we have introduced.

R. Codina gratefully acknowledges the support received from the ICREA Acadèmia Program, from the Catalan
Government. L. Moreno acknowledges the support received from the Spanish Government through a predoctoral FPI
Grant.
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