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Abstract The objective of this article is to summarise the work that we have
been doing as a group in the context of stabilised finite element formulations
for viscoelastic fluid flows. Viscoelastic fluids are complex non-Newtonian flu-
ids, characterised by having an irreducible constitutive equation that needs to
be solved coupled with the momentum and continuity equations. The finite
element approximation of this kind of fluids presents several numerical difficul-
ties. It inherits obviously the problems associated with the approximation of
the incompressible Navier-Stokes equations. But, on top of that, now the con-
stitutive equation is highly non-linear, with an advective term that may lead to
both global and local oscillations in the numerical approximation. Moreover,
even in the case of smooth solutions, it is necessary to meet some additional
compatibility conditions between the velocity and the stress interpolation in
order to ensure control over velocity gradients. The stabilised methods de-
tailed in this work allow one to use equal order or even arbitrary interpolation
for the problem unknowns (σ-u-p) (elastic deviatoric stress-velocity-pressure)
and to stabilise dominant convective terms, and all of them can be framed in
the context of Variational Multi-scale Methods (VMS). Some additional nu-
merical ingredients that are introduced in this article are the treatment of the
non-linearities associated with the problem and the possibility to introduce
a discontinuity-capturing technique to prevent local oscillations. Concerning
the constitutive equation, both the standard as the logarithmic conformation
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reformulation are discussed for stationary and time-dependent problems, and
different versions of stabilised finite element formulations are presented in both
cases.

Keywords Viscoelastic fluids · stabilised finite element methods · Variational
Multi-Scale methods · Log-conformation reformulation (LCR)

1 Introduction

Viscoelastic fluids are a specific kind of non-Newtonian fluids that come from
the blend of a solvent and a polymer. The latter gives to the fluid the ability
to store and recover shear-energy, which is a key aspect of viscoelastic fluids
[1]. This fact introduces the necessity to include an irreducible tensorial con-
stitutive equation that allows one to describe the elastic nature of the fluid,
yielding a coupled three-field problem, the unknowns of the problem being the
elastic deviatoric stress, the velocity, and the pressure.

Viscoelastic fluids are present in several industrial processes involving paints,
melts, plastics, food, adhesives, or 3D printing of polymeric materials, among
others [2,3,4,5,6,7,8,9]. Due to the broad spectrum of applications, the study
of this type of materials is carried out from different disciplines, ranging from
chemistry to mathematics. In the last forty years, computational rheology has
been shown as a powerful tool that enables to understand both fundamental
aspects of rheology and applied aspects involved in specific industrial prob-
lems. The challenge today for numerical methods is to be able to approximate
highly elastic flows in an accurate manner using efficient algorithms. In this
respect, this paper summarises the work developed by our group in the context
of stabilised finite element (FE) methods, including several numerical ingre-
dients related to the non-linear nature of the problem and the treatment of
local instabilities [10,11,12,13,14,15,16,17]. All these aspects will be studied
from a FE approach and will be framed in the context of stabilised methods
of Variational Multi-Scale (VMS) type.

The first part of the work (Section 2) is devoted to a state of the art
review of physical and mathematical aspects needed for the numerical mod-
elling of viscoelastic fluids. In Section 3, the continuous viscoelastic problem
is presented both in standard and logarithmic formulation. In Section 4, the
Galerkin problem is presented, emphasising the need for using a stabilised for-
mulation. In Section 5, the design process of a stabilised formulation of VMS
type is summarised, taking into account spatial and temporal instabilities.
After that, both the standard viscoelastic approach and the logarithmic refor-
mulation case are particularised in Section 6. In Section 7, some computational
aspects are presented, including solution algorithms and some implementation
aspects. Section 8 describes the main results available for the numerical analy-
sis of the formulations proposed. The work closes with some general conclusions
and an outlook in Section 9.
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2 A numerically-oriented state of the art

2.1 From physical to numerical instabilities

From a chemical point of view, viscoelastic fluids are characterised by hav-
ing complex and high-molecular-weight molecules with many internal degrees
of freedom [18]. The essential feature of polymeric or viscoelastic fluids is the
presence of long-chain molecules. In a flow, these chain molecules are stretched
out by the drag forces exerted on them by the surrounding fluid [19]. The
natural tendency of the molecule to retract from this stretched configuration
generates an elastic force (spring element) which contributes to the macro-
scopic stress tensor and coexists and interacts with the viscous component
of the fluid (dashpot element); this is the reason why these fluids are called
viscoelastic.

From the more general point of view, one can build a very sophisticated
nonlinear invariant theory from springs and dashpots [20]. Regarding this, the
Maxwell constitutive model is the simplest one that takes into account viscous
and elastic elements. Under the hypothesis that the relation between the stress
tensor and the kinematic tensors of a fluid particle should be independent
of the instantaneous orientation of that particle in space, the complexity of
constitutive models increases [18]. Using a co-rotating coordinate frame for
each fluid particle, the well known Oldroyd-B and Giesekus models can be
obtained. The design of constitutive models is from any point of view, a very
complicated task. In this respect, the molecular theories for polymeric liquids
are an essential tool to define more realistic models that try to mimic the
molecular structure and their interaction in a flow. For more details on these
important topics that are beyond the scope of this article, see specific and
classical texts such as [21,22,23].

The flow patterns in viscoelastic fluids can be highly dynamic and in some
cases chaotic, due to the elastic component of the fluid and the convective na-
ture of the constitutive equation, even in quasi non-inertial flows [24], where
non-linear rheological effects can manifest through the generation of large nor-
mal stresses which result in complex flow phenomena causing elastic turbu-
lence [25,26]. Typical situations where this physical phenomenon can be seen
are the flow in micro-channels or cross-flows, where the increase in normal
stresses promote the generation of boundary layers with patterns similar to
those of viscous turbulence [27,28]. In [29], the effect of the contraction ratio
in the dynamic response of the flow in square-square three-dimensional con-
tractions is analysed using experimental and numerical results, where asym-
metric flows in a symmetric problem are created increasing the elasticity of
the flow. In [30], the instabilities and the asymmetry of flow in a symmetric
domain are analysed for flows with high Deborah number using the Leonov
constitutive model. In this line, the turbulent flow of a viscoelastic solution
is a new challenge from the numerical approximation perspective, on the one
hand for the complex non-linear system that needs to be solved, and on the
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other, for the computational resources needed to approximate the unavoidable
time-dependent three-field problem.

The numerical approximation of high Weissenberg viscoelastic fluid flows
is one of the biggest challenges in computation rheology since the 1970s, and it
is called the High Weissenberg Number Problem (HWNP) [31]. It is defined as
a numerical phenomenon that causes the iterative computations to breakdown
for relatively low Weissemberg numbers. A distinctive feature of this instability
is that the breakdown occurs suddenly for a critical value of the Weissemberg
number, which is caused by a lack of convergence in the iterative method due to
the hyperbolic nature of the differential constitutive equations. The numerical
instability is brought about by the failure of the proper balance of the defor-
mation rate and the convection, and it was identified and discussed by Fattal
and Kupferman [32]. It is a fundamental instability, present in all constitutive
models and standard numerical methods. Nevertheless, it is demonstrated that
constitutive models can predict other instabilities of mathematical character
[33,34], referred to as constitutive instabilities, which can be classified in two:
the Hadamard instability, associated with the non-linear fast response of con-
stitutive equations, and the dissipative instability, related to the formulation
of the dissipative behaviour of viscoelastic models [35]. The consequences of
Hadamard’s instability are devastating. As the solution cannot be continued
or it is not continuous along the timeline, very quick blow-up instabilities
with very short-wave disturbances occur with devastating results for numeri-
cal computations, which fail to converge. Every constitutive equation includes
a dissipative term or terms. The formulation of the non-equilibrium terms may
give rise to another type of instability known as the dissipative instability. This
is a relatively new issue in the study of instabilities which plague non-linear
viscoelastic constitutive equations and was initiated by Kwon and Leonov in
[36]. A constitutive equation may be both Hadamard and dissipative unsta-
ble, and a constitutive equation which is Hadamard stable may turn out to be
dissipative unstable. Dissipative stability requires that firstly in any flow the
free energy and dissipation functionals remain bounded, and secondly, steady
flow curves in simple shear and in simple elongation must be monotonically
and unboundedly increasing with respect to the strain rate (see [37] for more
details about the stability of viscoelastic constitutive models).

Nowadays, the causes of the HWNP have been identified: on the one hand,
the loss of positive-definiteness of the conformation tensor, which is an in-
ternal variable that should be symmetric positive-definite to be physically
admissible [38,39] and, on the other hand, the large stress gradients, regions
with particular high deformation rate, or near stagnation points, favour the
breakdown of the numerical method, as explained in Fattal and Kupferman
in [38,32]. They describe this phenomenon to be caused by the use of inap-
propriate approximations to represent the stress tensor, emphasising the im-
portance of preserving its positivity, which is the key of the log-conformation
representation (denoted by LCR). The reformulation of the traditional equa-
tions of viscoelastic fluids using a logarithmic transformation eliminates some
instabilities and linearises the exponential stress profiles near the stress sin-
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gularities. Therefore, the formulation seeks to treat the exponential growth
of the elastic stresses, allowing to approximate more elastic flows. After the
original works of Fattal and Kupferman [38], alternative schemes have been
proposed. For example, Vaithianathan and Collins [40] presented two matrix
decomposition schemes in order to construct the positive definiteness confor-
mational tensor, employing the FENE-P model. Balci et al. [41] proposed a
square root conformation representation. Afonso et al. [42], developed several
matrix kernel-transformation families which can be applied to the conforma-
tion tensor equation. It is important to note that, although there is a variety
of proposals to deal with the lack of positive-definiteness in the conformation
tensor, the logarithm representation is the only one capable of linearising the
exponential stress profile.

In summary, what has been previously described allows us to realise the
complex nature of viscoelastic fluids, which strongly affects the design of nu-
merical methods that must face the instabilities of the continuous problem.
On the discrete problem side, other instabilities and difficulties appear, which
are summarised in the next subsection

2.2 Purely numerical challenges

From the mathematical point of view, a viscoelastic constitutive equation is
a convective-reactive non-linear time-dependent equation that must be solved
coupled with the momentum and continuity equations, giving place to a mixed
irreducible three-field problem which contains a tensorial, a vectorial and a
scalar unknown, in the isothermal case. This equation, coupled with the con-
servation of momentum and mass, yields a problem whose mathematical anal-
ysis is not yet complete (see Subsection 2.3). Assuming the problem to be
well-posed, let us discuss some delicate numerical issues.

The treatment of the nonlinearity is an aspect that deserves to be studied in
detail. Apart from the nonlinearity in the convective term of the momentum
equation, the constitutive equation has two additional nonlinear terms, the
convective one and the rotational term. Fixed point type schemes are robust,
but with a very low convergence rate when the elastic component increases [43].
Newton-Raphson schemes are the most extensively used in the literature [44,
45], although they often need to be complemented with additional numerical
tools, such as continuation methods or relaxation schemes [10]. The other
option is to solve the non-linear problem, either stationary or time-dependent,
using a decoupling in time algorithm, which is the basis of some finite volume
solution algorithms [46,47,48]. In the context of FE methods, fractional step
schemes also allow one to uncouple unknowns [49,11,50].

The FE approximation of the flow of viscoelastic fluids presents several
numerical difficulties. It inherits obviously the problems associated with the
approximation of the incompressible Navier-Stokes equations, mainly the com-
patibility between the velocity-pressure approximation and the treatment of
the nonlinear advective term [51]. But, on top of that, now the constitutive
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equation is highly nonlinear, with an advective term that may lead to both
global and local oscillations in the numerical approximation.

Even in the case of smooth solutions, it is necessary to meet some additional
compatibility conditions between the velocity and the stress interpolation in
order to control velocity gradients [52]. Elements that satisfy the compatibil-
ity requirements velocity-pressure and stress-velocity are rare and expensive to
use from the computational point of view [53]. These compatibility conditions
of inf-sup type are inherited from the Newtonian three-field Stokes or Navier-
Stokes problem [54,55], and they consist of two restrictions on the interpolation
spaces, one between pressure and velocity, and the other between velocity and
elastic stress (see e.g [56,57] and [58] for background). These two restrictions
reduce drastically the choices of stable FE spaces that allow one to discretise
the unknowns. For example, in the work of Marchal and Crochet [59] one can
find different inf-sup stable elements capable of solving the viscoelastic prob-
lem. In this classical reference, the authors propose a family of bi-quadratic
velocity and bilinear pressure elements with a multi-bilinear (2 × 2 or 3 × 3
or 4 × 4) stress element for the 2D case. The mathematical analysis of these
elements can be found in [60]. It is a clear example of the difficulties to satisfy
the two inf-sup conditions associated with the three-field formulation needed in
the viscoelastic flow problem. For the three-dimensional case, Bogaerds et al.
[53] propose a DEVSS-DG stable spatial discretisation using tri-quadratic in-
terpolation for velocity, tri-linear interpolation for both pressure and discrete
rate of deformation, while discontinuous tri-linear polynomials approximate
the viscoelastic stresses. In [61] one can find a useful review of mixed methods
that satisfy the two compatibility conditions required.

Once the equations have been properly linearised, the advective nature
of the constitutive equation, which becomes dominant when the Weissenberg
number increases or when the normal stresses are high, makes it necessary
to use a stabilised FE formulation to avoid global oscillations. The most
widespread method to account for the convective term in the constitutive equa-
tion is the so-called SUPG method of Brooks and Hughes [62], first applied to
viscoelastic flows by Marchal and Crochet [59]. In a more recent work, Masud
et al. [44] use a VMS stabilised method for the momentum-continuity equations
and the same SUPG method for the constitutive equation. Other stabilised
methods for the viscoelastic fluid problem are the GLS-type methods used for
example by Fan et al. [63] and Coronado et al. [64]. Different families of sta-
bilised formulations can also be found in the literature, which are in general ex-
tensions of those used for the standard Navier-Stokes equations. For example,
Li et al. [65] proposed the so-called I-PS-DEVSS-CNBS scheme to stabilise the
viscoelastic problem, based on the finite incremental calculus (FIC, [66]) pres-
sure stabilisation process, the discrete elastic-viscous stress-splitting method
(DEVSS), the use of the Crank-Nicolson-based-splitting (CNBS) scheme, and
the use of the non-consistent SU method to stabilise the viscoelastic equation.
Damanik et al. [67], proposed a consistent edge-oriented FE stabilisation tech-
nique, including special geometrical multigrid solvers. Other two options to
circumvent the dominant convective nature of the problem are the fully ex-
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plicit characteristic based split (CBS) scheme (see [68]) proposed by Nithiarasu
[69], with a good performance for a wide range of Weissenberg numbers, and
the nonlinear weighted least-squares FE method proposed by Lee [43]. More re-
cently, Venkatesan and Ganesan [70] proposed a stabilised FE method based on
the Local Projection Stabilisation technique showing accuracy and robustness
in classical benchmarks. In the same line, Varchanis et al. [71], implemented
equal order interpolation for σ-u-p using a combination of classical FE sta-
bilisation techniques (PSPG/DEVSS-TG/SUPG) with the log-conformation
representation of the constitutive equation to obtain numerically stable solu-
tions at high Weissenberg numbers.

The starting point of a VMS approach is to split the unknowns of the prob-
lem into two components, namely, the component that can be approximated
by the FE mesh and the unresolvable one, called sub-grid scale or sub-scale
in what follows. The latter needs to be approximated in a simple manner in
terms of the former, so as to capture its main effect and yield a stable formu-
lation for the FE unknown. The number of degrees of freedom is, therefore,
the same as for the Galerkin method. There are different ways to approximate
the sub-scale and, in particular, to choose the (finite dimensional) space where
it is taken. On this regard, two possible choices will be discussed in this work.
Another discussed aspect in this paper will be the structure of the sub-scale
method, which can be residual one or non-residual [14]. The last option has
been found crucial in the approximation of highly elastic flows. Finally, the
time-dependent nature of the sub-scales will be discussed, a key point to ensure
stability in anisotropic space-time discretisations [72,73,74,17,75], which we
believe is a crucial ingredient in the approximation of elastic turbulent flows.

In general, a stabilised FE method ensures globally stable solutions. How-
ever, viscoelastic flows are characterised by having strong gradients when the
elastic component of the fluid is important or when geometrical singularities,
like a rigid body or a non-convex corner, get in the way with the flow. The
use of discontinuity-capturing (DC) techniques is not a popular topic in the
analysis of viscoelastic flows, but the high elastic stress gradients that appear
when the Weissenberg number is increased make it a typical situation where
the application of a DC scheme can help [76]. In this last article, Bonito et
al. proposed a weakly consistent artificial viscosity term that vanishes at an
optimal rate under mesh refinement. Carew et al. in [77] have shown that the
inclusion of such a DC technique in a stabilised formulation can improve the
stability properties and permits to analyse fluids with a higher elasticity. In
that work, the numerical diffusion of the discontinuity-capturing term is based
on the FE residual of the constitutive equation, in a similar way to that used
by Codina [78] (see also [79]). In [10], we showed that a DC technique based
on the orthogonal projection of the elastic stress gradient, which represents
the non-captured part in the FE approximation, can improve the numerical ap-
proximation of the stresses, eliminating spurious peaks without physical sense.
This numerical technique can be crucial if standard viscoelastic formulations
are used.
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Since the logarithmic formulation was presented, a great number of works
have been written following this novel strategy, applying different method-
ologies and schemes, in finite volume and FE codes. Referring to FEs, the
first work applying the log-conformation reformulation is due to Hulsen et
al. [80] using the DEVSS/DG formulation for the discretisation and a first-
order upwind scheme to treat convective terms. Later, Coronado et al. [81]
proposed a simple alternative form of the log-conformation formulation imple-
mented in the DEVSS-TG/SUPG FE method, which in comparison with the
previous work required fewer code modifications with respect to the standard
formulation. An analysis between the two previous publications and two new
implementations was presented by Kane et al. [82], emphasising particularly
in the treatment of the advective term of the constitutive equation. The fi-
nal conclusion is that all four formulations are very similar, except the one
described by Coronado et al. [81], that is a little less robust due to the lin-
ear interpolation of the convective term. Damanik et al. [67] proposed a fully
coupled monolithic FE approach using the edge-oriented FE stabilisation for
the convective term. Saramito [83] and Knechtges [84] derived fully implicit
versions of the log-conformation formulation that do not involve an algebraic
decomposition of the velocity gradient tensor, and which can be linearised and
solved by the Newton-Raphson method.

We summarise in this work a slightly different formulation of the log-
conformation formulation, that has been recently proposed in [16] in the con-
text of a stabilised VMS method. A key point of this formulation is the ca-
pability to use it even when the Weissemberg number is close to zero. The
same idea was followed by Saramito [83]; both formulations can be reduced to
the standard Navier-Stokes equations when the Weissemberg number is set to
zero. Due to this, continuation methods can be successfully employed to get
convergence in highly nonlinear problems. Also, we have to remark that the
steady problem can be solved directly, while in most of the references indicated
the logarithmic formulation shows a strong time-dependency.

2.3 Some numerical analysis results

For viscoelastic fluid flows, in contrast to the Navier-Stokes equations, well-
posedness for general models is not well understood. Global existence in time of
solutions has been proved only if the initial conditions are small perturbations
of the rest state, and for the steady-state case existence of solutions can be
proved only for small perturbations of the Newtonian case (see [19,85] for
comprehensive reviews).

The existence of slow steady flows of viscoelastic fluids using differential
constitutive equations was proved in [86] for Hilbert spaces. For the time-
dependent case, the existence of solutions locally in time, and for small data
globally in time, has been proved for Hilbert spaces in [87]. The extension to
Banach spaces and a complete review of uniqueness, regularity, well-posedness
and stability results can be found in [85]. The existence of global weak solu-
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tions for general initial conditions using a co-rotational Oldroyd-B model has
been proved in [88] using a simplification (without physical justification) which
consists in replacing the velocity gradient in the stress equation by its skew-
symmetric part. In [89] the authors proved global existence of weak solutions
in two dimensions to the Oldroyd-B model regularised with the introduction
of a diffusion term in the constitutive equation and assuming homogeneous
natural boundary conditions associated to this term. An analysis of the effects
it has on the numerical approximation can be found in [90].

In the context of the FE approximation, for the steady-state case, one of
the first works where the existence of approximate solutions and error anal-
ysis were presented is that of Baranger and Sandri in [52]. The authors used
a discontinuous interpolation (Lesaint-Raviart method) to treat the viscoelas-
tic stresses. Later, Sandri in [91] showed by using a fixed point method that
the discrete approximate problem using a P1(continuous)-P2 (continuous)-P1

(continuous) interpolation for stress, velocity, and pressure, respectively, and
the SUPG method to treat the convective term in the constitutive equation,
has a unique solution for which error bounds can be found. Picasso and Rap-
paz [92] analysed a stationary non-linear Stokes problem, and they proved
a priori and a posteriori error estimates for the FE approximation for small
Weissenberg numbers using a GLS method and an Elastic Viscous Split Stress
(EVSS) scheme, aimed to circumvent the inf-sup condition between velocities
and stresses. More recently, in [93] the authors present an error analysis of a
particular Oldroyd-B model with the limiting Weissenberg number going to
infinity, assuming a suitable regularity of the exact solution for FE and finite
volume methods.

The extension to the time-dependent case was treated in [76] for the same
non-linear Stokes problem, proving global existence in time in Banach spaces
under the small data assumption. For a Stokes/Oldroyd-B linearised problem,
Bonito and Burman presented in [94] optimal a priori error estimates using
the Interior-Penalty method. In this work, the authors showed that adding
some type of artificial viscosity in the constitutive equation, the problem can
be solved for a large range of Weissenberg numbers. A similar problem was
studied by Ervin et al. in [95] for the steady state case, but using the Johnson-
Segalman linearised constitutive model, proving existence and uniqueness of
the continuous problem and of a FE approximation under the small data as-
sumption. Ervin and Miles in [96] analysed the Oldroyd-B time-dependent
case both in the semi-discrete and in the fully discrete cases using the SUPG
method, proving existence and deriving a priori error estimates for the numer-
ical approximation, assuming a Taylor-Hood pair approximation for the veloc-
ity and pressure and a continuous approximation for the viscoelastic stresses.
In [97] the authors analysed the time behaviour of the viscoelastic Oldroyd
model in two dimensions using a Galerkin formulation in space; in this work,
the stress is eliminated through a proper projection operator, resulting in an
integro-differential equation in terms of velocity and pressure.

In particular, for VMS-type stabilisation methods, the three-field Stokes
problem was presented and analysed in [55], and the same approach was fol-



10 Ernesto Castillo et al.

lowed in [13]. In this case, it was applied to a linearised version of the station-
ary standard formulation of the viscoelastic flow problem, using the Oldroyd-B
model. The linearisation is based on considering known the advection velocity
and the velocity gradient in the rotational terms of the constitutive equation.
The analysis follows a classical approach to prove stability and convergence,
first using a mesh-dependent working norm, and then extending the results
to natural norms. The analysis of the logarithmic formulation [98] allows ex-
plaining its improved performance with respect to the standard formulation
when the Weissenberg number is high. This would be difficult to observe in
the full nonlinear problem, since conditions to ensure the existence of solu-
tions and convergence of their FE approximation pose stringent requirements
on the Reynolds and Weissenberg numbers of the problem, even in the time-
dependent case; for the standard formulation, this analysis can be found in
[15]. Moreover, apart from analysing a time-dependent linearised problem, the
novelty of this work is also the treatment of some of the terms that appear in
the analysis. The main results of these works are summarised in Section 8.

3 The viscoelastic flow problem

Having stated the physical and numerical difficulties involved in the approxi-
mation of viscoelastic fluid flows, we start with the definition of the problem
at the continuous level and then proceed to explain the discretisation tools
employed to approximate its solution.

3.1 Standard initial and boundary value problem

Let us start presenting the standard equations associated to a viscoelastic fluid
flow moving in a domain Ω of Rd (d = 2 or 3) during the time interval [0, tf ];
the boundary of Ω is denoted by ∂Ω. Assuming the flow to be incompressible
and isothermal, the governing equations are the conservation of momentum
and mass, which can be expressed as follows:

ρ
∂u

∂t
+ ρu · ∇u−∇ ·T +∇p = f in Ω, t ∈ (0, tf), (1)

∇ · u = 0 in Ω, t ∈ (0, tf), (2)

where ρ denotes the density of the fluid, p : Ω × (0, tf) → R represents the
pressure, u : Ω × (0, tf)→ Rd is the velocity field, f : Ω × (0, tf)→ Rd is the
right hand side force vector and T : Ω × (0, tf) → Rd ⊗ Rd is the deviatoric
extra stress tensor. For viscoelastic fluids, T is defined in terms of a viscous
and a viscoelastic contribution as

T = 2ηs∇su+ σ, (3)

where ∇su is the symmetric part of the velocity gradient, β ∈ [0, 1] is a real
parameter used to define the amount of viscous or solvent viscosity, ηs = βη0,
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and elastic or polymeric viscosity, ηp = (1− β) η0, in the fluid. The key point
in viscoelastic fluids is that the problem is incomplete without the definition
of a constitutive equation for the elastic part of the extra stress tensor (σ).
A large variety of approaches exist to define it; see [21,22] for a complete
description, where both differential and integral expressions can be found.

The most popular differential constitutive model used to check new numer-
ical formulations is the Oldroyd-B model, that reads as

1

2ηp
σ −∇su+

λ

2ηp

(
∂σ

∂t
+ u · ∇σ − σ · ∇u− (∇u)

T · σ
)

= 0

in Ω, t ∈ (0, tf). (4)

This model can be regarded as an extension of the Upper Convected Maxwell
model and is equivalent to a fluid filled with elastic bead and spring dumb-
bells. From the rheological point of view, the Oldroyd-B model is a linear
viscoelastic constitutive model, and therefore its use is restricted to motions
with very small displacement gradients. However, the critical point of its use
lies in the fact that it is the basis of non-linear models such as the Giesekus
or Phan-Thien-Tanner (PTT) models, which contain only one additional term
that is quadratic with respect to the stress field component. For this article,
the Oldroyd-B model allows us to expose the key aspects of a stabilised formu-
lation. The extension to more complex constitutive models is straightforward.

Let us introduce some notation to write the viscoelastic problem in compact
form, which will simplify the presentation of the problem in the following
sections. Calling U = [u, p,σ], F = [f , 0,0] and defining

Dt(U) :=


ρ
∂u

∂t
0

λ

2ηp

∂σ

∂t

 , (5)

and

L(û;U) :=


ρû · ∇u− 2ηs∇ · (∇su)−∇ · σ +∇p

∇ · u
1

2ηp
σ −∇su+

λ

2ηp

(
û · ∇σ − σ · ∇û− (∇û)

T · σ
)
 , (6)

where û represents an auxiliary variable used to distinguish the velocity with
the role of advection (note that this velocity introduces the convective nonlin-
earity of the problem), we may write (1), (2) and (4) using the definition (3)
as:

Dt(U) + L(u;U) = F , (7)

which represents a mixed parabolic-hyperbolic system.
To close problem (7), initial and boundary conditions both in the velocity

and the elastic stress fields are needed. In principle the elastic stresses can be
fixed only on the inflow part of the boundary Γin = {x ∈ ∂Ω | (u · n) (x) < 0},
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where n is the outward unit normal vector to ∂Ω. For simplicity in the expo-
sition, we will consider homogeneous Dirichlet conditions for the velocity field
and no boundary conditions for σ; however, all the methods summarised in the
following are entirely general, and any boundary condition can be included.

3.2 The log-conformation reformulation

As commented above, the HWNP is a fundamental instability that all numer-
ical methods suffer and can be overcome using the logarithmic reformulation.
The logarithmic reformulation of the constitutive equation will be exposed
starting from the standard approach, and following the nomenclature and
structure presented in [16].

First, the conformation tensor, an internal variable that represents the
macromolecular configuration of the polymer chains, is defined, taking into
account that it must be symmetric and positive-definite to be physically-
admissible; this is a consequence of statistical mechanics arguments. It is de-
fined as

τ =
λσ

ηp
+ I.

Consequently, and based on the work of [38], the stress tensor can be expressed
as a function of the conformation tensor as σ =

ηp
λ (τ − I). Then, replacing σ

in the constitutive equation (4) by τ , we can rewrite the Oldroyd-B model in
terms of this new variable as

1

2λ
(τ − I)−∇su+

1

2

(
∂τ

∂t
+ u · ∇τ − τ · ∇u− (∇u)T · τ

)
= 0. (8)

Note that this expression is valid only for λ > 0. To allow the use of this
approach even for λ = 0, a small but important modification will be done,
following the idea presented in [16]. To this end, we introduce the relaxation-
time parameter λ0(λ) linearly dependent with λ, which could be defined as
λ0 = max{kλ, λ0,min}, k being a constant and λ0,min a given threshold. So,
if k = 1 and λ0,min = 0, the original change of variables proposed by Fattal
and Kupferman [38] is recovered; however, if k is taken equal to zero, then
the three-field Navier-Stokes problem for Newtonian fluids is obtained. From
the convergence point of view, in [16] it is reported that it is useful to take
k small. With this in mind, the conformation stress tensor is replaced by the
new tensor, still denoted by τ ,

τ =
λ0(λ)σ

ηp
+ I.

Note that if λ0 ≤ λ, τ will be positive definite if so is the original conformation
tensor. To avoid excessive nomenclature, from this point we will use λ0 instead
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of λ0(λ), and we will still call τ the conformation tensor. The constitutive
equation (4) can be rewritten by following the proposed modification as

1

2λ0
(τ − I)−∇su+

λ

2λ0

(
∂τ

∂t
+ u · ∇τ − τ · ∇u− (∇u)T · τ + 2∇su

)
= 0.

(9)

The log-conformation reformulation consists in a change of variables in
terms of the matrix-logarithm of the conformation tensor, that is to say, the
conformation tensor is replaced by a new variable ψ = log(τ ). This can be
calculated through an eigenvalue computation, rotating the τ tensor into its
main principle axis, and can be expressed as ψ = R log(Λ)RT ; this operation
is possible because τ is a symmetric positive definite tensor and therefore it can
always be diagonalised, the eigenvalues being non-negative. In the expression
introduced, Λ is a diagonal matrix with these eigenvalues of τ , and R is the
orthogonal matrix of the eigenvectors of τ .

To sum up, in order to obtain the new formulation the stress tensor must
be replaced by σ =

ηp
λ0

(τ −I), and in turn, the conformation tensor τ must be
written as τ = exp(ψ) in the standard viscoelastic formulation detailed above,
(1), (2) and (4). The new equations of the log-conformation formulation are
now expressed as follows:

ρ
∂u

∂t
− ηp
λ0
∇ · exp(ψ)− 2ηs∇ · (∇su) + ρu · ∇u+∇p = f , (10)

∇ · u = 0, (11)

1

2λ0
(exp(ψ)− I)−∇su+

λ

2λ0

(∂ exp(ψ)

∂t
+ u · ∇ exp (ψ)

− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su
)

= 0, (12)

where the unknowns are the velocity, the pressure, and the tensor ψ, which
depends directly on the viscoelastic stress tensor σ.

In the same way as for the standard case, we can write (10)-(12) in compact
form, redefining U log = [u, p,ψ] and F log = [f , 0, 1

2λ0
I] and defining

Dt,log(U) :=


ρ
∂u

∂t
0

λ

2λ0

∂ exp(ψ)

∂t

 , (13)

Llog(û;U) :=


− ηp
λ0
∇ · exp(ψ)− 2ηs∇ · (∇su) + ρû · ∇u+∇p

∇ · u
1

2λ0
exp(ψ)−∇su+

λ

2λ0
(û · ∇ exp(ψ)

− exp(ψ) · ∇û− (∇û)T · exp(ψ) + 2∇su
)

 , (14)
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where again û represents an auxiliary variable used to distinguish the velocity
with the role of advection. The compact form is now:

Dt,log(U) + Llog(u;U) = F log. (15)

Again, problem (15) needs to be complemented with initial and boundary
conditions, with the same remarks as for the standard case. The problem
is completely defined by the initial conditions for the velocity and the new
variable ψ, which are denoted by u = u0, and ψ = ψ0 at time t = 0, with u0

and ψ0 functions defined on the whole domain Ω.

To avoid excessive nomenclature in what follows, we will omit the subindex
log in (13) and (14), even if we refer to the logarithmic problem, but taking
into account that the logarithmic problem (15) is different to the standard
one (7).

3.3 Variational form

In order to write the weak form of the problem, let us introduce some standard
notation. The space of square integrable functions in a domain ω is denoted
by L2(ω), and the space of functions whose distributional derivatives of order
up to m ≥ 0 (integer) belong to L2(ω) is denoted by Hm(ω). The norm in
Hm(Ω) will be denoted ‖ · ‖m, with m <∞, whereas ‖ · ‖∞ will stand for the
norm in L∞(Ω). The norm in L2(Ω) will be simply written as ‖ · ‖.

The space H1
0 (ω) is made up of functions in H1(ω) vanishing on ∂ω. The

topological dual of H1
0 (Ω) is denoted by H−1(Ω), the duality pairing being

〈·, ·〉. The L2 inner product in ω (for scalars, vectors and tensors) is denoted
by (·, ·)ω and the integral over ω of the product of two general functions is
written as 〈·, ·〉ω, the subscript being omitted when ω = Ω. The norm in a
space X is denoted by ‖ · ‖X , except in the case X = L2(Ω), case in which
the subscript is omitted. With this notation in mind, we will write the weak
forms for the standard and for the logarithmic formulations.

In the standard case, the velocity and pressure spaces are V0 = H1
0 (Ω)d

and Q = L2(Ω)/R, respectively, while stresses are assumed to belong to Υ :={
χ | χ ∈ (L2 (Ω))d×dsym , w · ∇χ ∈ (L2(Ω))d×dsym ∀w ∈ V0

}
, where the subscript

sym stands for symmetric tensors. Under this regularity requirements, the
weak form in the standard case consists in finding U = [u, p,σ] : (0, tf) −→
X := V0 ×Q× Υ , such that the initial conditions are satisfied and:(

ρ
∂u

∂t
,v

)
+ 2 (ηs∇su,∇sv) + 〈ρu · ∇u,v〉

+ (σ,∇sv)− (p,∇ · v) = 〈f ,v〉 , (16)

(q,∇ · u) = 0, (17)(
1

2ηp
σ −∇su,χ

)
+

λ

2ηp

(
∂σ

∂t
+ u · ∇σ,χ

)
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− λ

2ηp

(
σ · ∇u+ (∇u)

T · σ,χ
)

= 0, (18)

for all V = [v, q,χ] ∈ X , where it is assumed that f is such that 〈f ,v〉 is well
defined.

For the logarithmic reformulation, we shall consider the case in which the
change of variables in the stress is made for the unknown, but not for the
test function. The reason is that this option simplifies the FE implementation,
since we shall see that after linearisation we can use standard FE spaces.
From the physical point of view, the unknown will be the logarithm of the
conformation tensor, a dimensionless variable, whereas the test function will
be a stress, and therefore will belong to the same space Υ introduced before.
Up to scaling by ηp/λ0, this is also the space for the conformation tensor τ , and
we can formally write the space for the unknown ψ as Υψ = log(Υ ). Thus, the
weak form consists of finding U = [u, p,ψ] : (0, tf) −→ Xψ := V0 ×Q× Υψ,
such that the initial conditions are satisfied and:(

ρ
∂u

∂t
,v

)
+
ηp
λ0

(exp(ψ),∇sv) + 2(ηs∇su,∇sv)

+〈ρu · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉, (19)

(q,∇ · u) = 0, (20)(
1

2λ0
exp(ψ)−∇su,χ

)
+

λ

2λ0

(
∂ exp(ψ)

∂t
,χ

)
+

λ

2λ0
(u · ∇ exp(ψ)− exp(ψ) · ∇u,χ)

+
λ

2λ0

(
−(∇u)T · exp(ψ) + 2∇su,χ

)
=

1

2λ0
〈I,χ〉, (21)

for all V = [v, q,χ] ∈ X . We could also have used a test function for the
constitutive equation of the form

ηp
λ0

exp(χ), where now χ would be dimen-
sionless. This would simplify the analysis but, as commented above, complicate
significantly the FE approximations described later on.

In compact form, problems (16)-(18) and (19)-(21) can be written as:

(Dt(U),V ) +B(u;U ,V ) = 〈F ,V 〉, (22)

where the semi-linear form B(u;U ,V ) (linear in the last two arguments)
should be defined for the standard and for the logarithmic case. For the stan-
dard case it reads as

B(û;U ,V ) = (σ,∇sv) + 2 (ηs∇su,∇sv) + 〈ρû · ∇u,v〉 − (p,∇ · v)

+ (∇ · u, q) +
1

2ηp
(σ,χ)− (∇su,χ) +

λ

2ηp
(û · ∇σ,χ)

− λ

2ηp

(
σ · ∇û+ (∇û)

T · σ,χ
)
, (23)
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while in the logarithmic case it reads as

B(û;U ,V ) =
ηp
λ0

(exp(ψ),∇sv) + 2(ηs∇su,∇sv) + 〈ρû · ∇u,v〉

− (p,∇ · v) + (∇ · u, q) +
1

2λ0
(exp(ψ),χ)− (∇su,χ)

+
λ

2λ0

(
û · ∇ exp(ψ)− exp(ψ) · ∇û− (∇û)T · exp(ψ) + 2∇su,χ

)
. (24)

Note that using this compact notation we can refer to each problem in a general
way. In fact, we shall not distinguish between the spaces X and Xψ, being
understood that if the log-conformation formulation the unknowns belong to
the latter.

4 Galerkin finite element discretisation and time discretisation

4.1 Space approximation

The standard Galerkin approximation for the variational problem defined by
(22) can be performed by considering a FE partition Th of the domain Ω. The
diameter of an element domain K ∈ Th is denoted by hK and the diameter of
the element partition is defined by h = max {hK | K ∈ Th}. Under the above
considerations, we can construct conforming finite element spaces, V0,h ⊂ V0

and Qh ⊂ Q in the usual manner. As said before, abusing of the notation we
will use the same symbol for the space of the stresses and the logarithm of the
conformation tensor, Υ , being Υ h ⊂ Υ the FE space. If X h = V0,h × Qh ×
Υ h and Uh = [uh, ph,σh orψh], the Galerkin FE approximation consists in
finding Uh : (0, tf) −→ X h such that

(Dt(Uh),V h) +B(uh;Uh,V h) = 〈F ,V h〉, (25)

for all V h = [vh, qh,χh] ∈ X h.

4.2 Time discretisation

There are a lot of possibilities for the discretisation in time using finite differ-
ences, but we will restrict ourselves to the classical backward difference (BDF)
approximations. Consider a partition of the interval [0, tf ] into m subintervals
of constant size δt, and let f(t) be a generic time-dependent function. We will
denote as fn the approximation to f(tn), with tn = nδt, n = 0, 1, 2, . . . ,m. A
BDF approximation to the time derivative of the function f order k = 1, 2, . . . ,

is given by δkf
n+1

δt , where δkf
n+1 is defined as

δkf
n+1 =

1

γk

(
fn+1 −

i−1∑
i=0

ϕikf
n−k

)
,

and where γk and ϕik are parameters.
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4.3 Compatibility conditions for the viscoelastic problem

Until now, we have posed no restrictions on the choice of the FE spaces.
However, some restrictions must be satisfied explicitly in a three-field formu-
lation (even for non elastic-flows) [56,99,55,100,13]. For example, it is readily
checked for the standard approximation that

B (Uh, [uh, ph,σh]) = 2ηs ‖∇suh‖2 +
1

2ηp
‖σh‖2

− λ

2ηp

(
σh · ∇uh + (∇uh)

T · σh,σh
)
.

Assuming λ∇ûh to be small enough, this expression provides only control
on ‖σh‖2 for all β ∈ [0, 1]. To control the other two fields one has then to make
use of the two inf-sup conditions that restrict the possible interpolations:

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)

‖vh‖Vh
‖qh‖Qh

≥ C1, (26)

to control ph, and

inf
vh∈Vh

sup
χh∈Υ h

(χh,∇svh)

‖χh‖Υ h
‖vh‖Vh

≥ C2, (27)

to control ∇suh, where C1 and C2 are positive constants. It is therefore re-
quired that the FE spaces satisfy (26)-(27). These two conditions pose strin-
gent requirements on the choice of the FE spaces both in the standard and
in the logarithmic case. Our intention in this work is to summarise some sta-
bilised FE formulations that avoid the need for such conditions and, in par-
ticular, allow one to use equal interpolation for all the unknowns, including
the possibility to use arbitrary interpolations. In general, a stabilised formu-
lation consists of replacing the bilinear form of the problem (Eq. (25)) by
another bilinear form Bh, possibly mesh dependent, with enhanced stability
properties. In the viscoelastic problem, even for inf-sup stable elements, the
convective terms in both the momentum and constitutive equations need to
be stabilised.

The objective of the next section is to present a general approach to design
stabilised FE formulations under the VMS framework, highlighting only the
most essential aspects, avoiding technicalities due to the extension of the work
and referring to the review [101] for more details.

5 Variational multi-scale formulation for an abstract problem

The basic idea of a stabilised formulation in a VMS framework is to approx-
imate the effect of the components of the solution of the continuous problem
that cannot be resolved by the FE mesh. Here we present the general idea in
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the case of a general nonlinear evolution problem and then particularise it to
the problem of interest both in the standard as in the logarithmic case.

Consider a differential equation of the form:

M (U)
∂U

∂t
+ L (U ,U) = F , (28)

where U contains the unknowns of the problem (which in our particular case
are [u, p,σ orψ]), L(U , ·) corresponds to an operator (the spatial operator)
associated with the specific problem at hand, assumed to be linear in the
second argument, M(U) is a mass matrix, and F a force vector.

The weak form of the generic problem (28) can be formally written as(
M (U)

∂U

∂t
,V

)
+ 〈L (U ,U) ,V 〉 = 〈F ,V 〉 , (29)

for an appropriate “duality” 〈·, ·〉, and considering V as a test function. The
boundary conditions of the problem have to be taken into account, and are
understood to be incorporated in the duality 〈·, ·〉. Likewise, when considering
FE functions the duality has to be understood as the element-wise integral
with appropriate inter-element jumps.

5.1 The sub-scale concept

The basic idea of the VMS formulation applied to the generic problem is to
split the unknown as U = Uh + Ũ , where Uh ∈ X h is the component of the
solution that belongs to the FE space (the Galerkin component) and Ũ ∈ X̃
is the remainder, referred to as sub-grid scale or sub-scale. The spaces X h and
X̃ are such that X = X h ⊕ X̃ . Under the above considerations, the original
problem (29) is exactly equivalent to:(

M (U)
∂U

∂t
,V h

)
+ 〈L (U ,U) ,V h〉 = 〈F ,V h〉 ∀ V h ∈ X h, (30)(

M (U)
∂U

∂t
, Ṽ

)
+
〈
L (U ,U) , Ṽ

〉
=
〈
F , Ṽ

〉
∀ Ṽ ∈ X̃ . (31)

In essence, the goal of all sub-scale methods is to approximate Ũ in one
way or another and end up with a problem for Uh alone.

5.2 General approach of the sub-scale stabilised formulation

There are different approximations for the sub-scale component Ũ that allow
writing it as a function of the FE component, Uh.

We call the sub-scales dynamic if their temporal derivative is taken into
account, whereas if it is neglected, we call them quasi-static. Another possible
simplification is to consider that they vanish on the inter-element boundaries,
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as it is done, for example, when bubble functions are used to approximate
the sub-scales. We will assume this, although this restriction could be relaxed
[102,103]. A third possible simplification explained in more detail below, is to
neglect the sub-scale effect on the non-linear terms of the equation [104].

Apart from the simplifications described, another important ingredient in
the construction of the stabilised formulation is the choice of the space where
the sub-scales belong. The most common choice is to take it equal to the
space generated by the operator associated with the problem, applied to the
FE space [105]. Another possibility is to take it orthogonal to the finite element
space, that is, X̃ = X⊥h , resulting in the so called orthogonal sub-scales (OSS)
method [106].

Very briefly, the procedure described below allows one to approximate the
sub-scale component Ũ in terms of the FE unknown Uh; this is achieved after
manipulating the sub-scale equation (31). The final problem can be there-
fore understood as an enriched problem with the same numbers of degrees
of freedom as in the Galerkin case. A key point in the approximation of the
sub-scales in terms of the FE component is to avoid derivatives of the variable
that we want to approximate or model (the sub-scale) in equation (30). After
an appropriate integration by parts, equations (30)-(31), can be written as
follows:(

M (U)
∂U

∂t
,V h

)
+ 〈L (U ,Uh) ,V h〉

+
〈
Ũ ,L∗ (U ,V h)

〉
= 〈F ,V h〉 ∀ V h ∈ X h, (32)(

M (U)
∂U

∂t
, Ṽ

)
+
〈
L (U ,Uh) , Ṽ

〉
+
〈
L(U , Ũ), Ṽ

〉
=
〈
F , Ṽ

〉
∀ Ṽ ∈ X̃ , (33)

where we have introduced the formal adjoint L∗(U , ·) of operator L(U , ·),
which is defined through the relationship

〈L (U ,W ) ,V 〉 = 〈W ,L∗ (U ,V )〉 ,

for all U , W , V ∈ X . Note that this operator appears after transferring
the space derivatives to the test function. Again, the duality might involve
inter-element jump terms when FE functions are considered. However, if these
inter-element terms are neglected and P̃ denotes the L2 projection onto the
space of sub-scales, Eq. (33) can be formally written as

P̃

[
M (U)

∂Ũ

∂t
+ L

(
U , Ũ

)]
= P̃ [RU ] ,

where RU represents the residual of the FE approximation, defined as

RU = F −M (U)
∂Uh

∂t
− L (U ,Uh) .
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At this point, additional approximations are required, and different meth-
ods may be devised according to the approximations chosen. A particular case
is an algebraic approximation of the sub-scales [107]. The approximation of
the problem in this case is:

L
(
U , Ũ

)
≈ α−1 (U) Ũ ,

where α−1 (U) is a matrix defined within each element domain that has to
be determined. The standard option is to define α (U) as a diagonal matrix;
however, this is not the only option as seen in [108]. Throughout this work, we
will refer to α (U) as the matrix of stabilisation parameters. From the physical
point of view, this matrix ensures dimensional consistency in the stabilisation
terms that finally are added to the Galerkin problem, and from the numerical
point of view it ensures stability and optimal order of convergence.

With the above considerations and for an adequate projection onto the sub-
scale space P̃ , Ũ needs to be calculated from the following ordinary nonlinear
differential equation in each element:

M (U)
∂Ũ

∂t
+α−1 (U) Ũ = P̃

[
F −M (U)

∂Uh

∂t
− L

(
Uh + Ũ ,Uh

)]
, (34)

where we have assumed for simplicity that the term on the left belongs to the
sub-scale space. It is important to note that the calculation of Ũ needs to be
made at the integration points, that is to say, Eq. (34) is, in fact, a nonlinear
ordinary differential equation.

Concerning the approximation of the sub-scale from Eq. (34), some remarks
can be done:

Remark 1 For any definition of P̃ , the final formulation is residual-based, that
is, the sub-scales depends on the residual of the FE approximation and, there-
fore, the method derived under this approach is consistent by construction.

Remark 2 Neglecting the time derivative in Eq. (34) could be understood as
considering that the sub-scales adapt automatically to the FE residual. The
sub-scales obtained from this assumption were defined in [106] as quasi-static.

Remark 3 If the time derivative in Eq. (34) is considered, the obtained method
is called dynamic. The benefits of a dynamic formulation can be found in [109].
Among other things, a dynamic formulation allows one to use an anisotropic
space-time discretisation, avoiding the small time step instability encountered
in the quasi-static option.

Remark 4 Observe that (34) is a nonlinear equation, due to the dependence
of α and RU on the sub-scale Ũ . Note that this nonlinearity is independent
on whether the sub-scales vary in time or not. The final non-linear problem
associated to the sub-scale can be linearised and solved iteratively. If this is
the case, the sub-scale is called nonlinear (see [104] for more details).
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Replacing the sub-scale obtained from Eq. (34) after discretising in time in
Eq. (32), we obtain a residual-based VMS stabilised formulation that permits
equal order interpolation between the variables of the problem. It remains
only to define the space of sub-scales or, what is equivalent, the projection P̃ .
As mentioned before, the two possibilities that we consider are to take P̃ as
the adequate identity I when applied to FE residuals or to take it as the L2

orthogonal (global) projection to the FE space. We refer to the first option
as ASGS (Algebraic Sub-Grid Scale) and to the second as OSS (Orthogonal
Sub-scale stabilisation).

5.3 Two particular aspects

In the following, we describe in more detail two aspects of the general approach
presented above. First, we elaborate on the time-dependent sub-scales, and
next, we consider the possibility of using non-residual-based formulations.

5.3.1 Time dependent sub-scales

Stabilised FE methods were initially motivated for the steady-state case and
later extended to the transient case (see for example [110] for an early space-
time approach). In a VMS method, the exact problem for the sub-grid scales
involves inverting a differential operator; the approximation to this operator
leads to the stabilisation parameters on which the formulation depends. A
classical way to proceed is to consider the time derivative discretised by finite
differences, and therefore to consider its effect as a source with coefficient δt−1,
and to neglect the time derivative of the sub-scales. Thus, the stabilisation
parameters depend on δt−1. This fact, in particular, implies that the steady
state solution, if it exists, depends on the value of δt used to step in time. Apart
from this inconsistency, as it has been mentioned this approach is unstable for
anisotropic space-time discretisations, as pointed out in [111,73].

The use of time-dependent sub-scales was introduced in [106], and its im-
portance elaborated in [72,112,73]. Here we summarise the key ideas of a
dynamic formulation for the sub-scales, which for the viscoelastic case was
proposed and tested numerically in [17].

Using a first order backward difference scheme to discretise in time the
sub-scale equation (34) and taking n as the time integrator counter, we arrive
at:

Ũ
n+1

=

(
1

δt
M (U) +α (U)

−1
)−1

P̃

(
1

δt
Ũ
n

+ [RU ]

)
, (35)

where it is understood that α (U) needs to be computed with the sub-scale
at time step n+ 1. From these expressions we see that the sub-scales depend

on α (U)dyn =
(
δt−1I +α (U)

−1
)−1

. Expressions with asymptotic behaviour

similar to that of α (U)dyn have been proposed for the Navier-Stokes problem,
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for example in [110,113]. In [111], there is a study of the instability encoun-
tered when the ASGS method and quasi-static sub-scales are used. It is shown
in that reference that even for the Stokes time continuous problem the Schur
complement matrix for the pressure is not uniformly invertible, and this prop-
erty is inherited as δt → 0 if h remains fixed. The same arguments can be
applied to the viscoelastic case, where in addition we have a time dependent
constitutive equation.

It is not difficult to prove that this discrete space-time instability disappears
if, for a specific matrix norm | · |,

|M (U) δt−1| ≤ C|α (U)
−1 |, (36)

where C represents a positive constant. From this condition, it seems clear
that the stabilisation parameters and the time step size must be related in
classical (quasi-static) stabilised FE methods. It is important to note that, if
(36) holds, it is irrelevant from the analysis point of view whether the sub-
scales are considered dynamic or quasi-static. The importance of considering
dynamic sub-scales is that (36) is not needed for stability, which could become
crucial when we have two evolutionary equations with a different dynamic
nature.

5.3.2 Non-residual-based stabilised formulations

A stabilised FE formulation designed following the steps presented above is
globally stable and for smooth enough solutions should display optimal order
of convergence. Let us suppose, to simplify the following discussion, that quasi-
static sub-scales are used. In this case Eq. (35) reduces to Ũ = α(U)P̃ [RU ]
at each time step. Replacing this in (32), yields:(

M (U)
∂U

∂t
,V h

)
+ 〈L (U ,Uh) ,V h〉

+
〈
α (U)P̃ [RU ] ,L∗ (U ,V h)

〉
= 〈F ,V h〉 ∀ V h ∈ X h, (37)

where we can see that the stabilisation term added to the original weak form
is a function of the FE residual and the adjoint operator applied to the test
functions. The number of stabilisation terms that arise from this inner product
can be very large, this is the case of the viscoelastic flow problem. The key idea
of non-residual-based formulations is that not all the resulting terms provide
stability to the formulation.

If we consider the case P̃ = P⊥h , from (37) we can design a simplified
method, which consists in neglecting the cross local inner-product terms that
arise from the stabilisation, as well as some other terms that do not contribute
to stability. The key aspect that allows one to do that even for high order
elements is the orthogonal projection P⊥h .

The price to pay when using a non-residual method is that the terms added
to the Galerkin problem are not zero when the FE solution is replaced by the
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continuous solution, and therefore the method is not consistent in the sense
used in the FE context. However, the consistency error is of optimal order,
since for any smooth enough function f , Ph(f) is an optimal approximation
to f in the FE space, and therefore P⊥h (f) goes to zero with h at the optimal
rate permitted by the FE interpolation (and the smoothness of f).

In the next section, the general VMS ideas presented heretofore will be
applied to the viscoelastic problem, firstly in the standard case and then for the
logarithmic reformulation of the viscoelastic problem. Let us remark that the
non-residual term-by-term stabilisation, first proposed in [114] and analysed in
[115], was found to be particularly well suited to the viscoelastic flow problem,
showing improved accuracy and robustness in classical benchmarks where the
problem presents geometric singularities like a non-convex corner, or in general
when the gradients of the elastic stresses are important [10,16].

6 Stabilised finite element formulations for the viscoelastic problem

In this section we finally present the stabilised FE formulations for the vis-
coelastic flow problem we wish to review, all based on the VMS concept and
applied to the standard formulation and the logarithmic conformation reformu-
lation. In both cases we use a similar scheme: we start considering quasi-static
sub-scales with continuous interpolations for all fields and a residual-based
formulation, then we describe the non-residual-based approach and finally
we describe the modifications caused by considering the sub-scales dynamic.
In the case of the standard formulation, we consider two more issues, that
could be easily extended to the logarithmic conformation reformulation case:
the introduction of some inter-element terms that are needed when pressures
and stresses are discontinuous and the convenience of using a discontinuity-
capturing technique.

6.1 The standard viscoelastic problem

6.1.1 Residual-based stabilised finite element formulations

Let us assume for the moment that we use quasi-static sub-scales and that the
FE interpolation for all fields is continuous. A stabilised residual-based FE
formulation designed following the ideas presented above consists in adding to

the Galerkin terms of the problem the term
〈
αP̃ [RU ] ,L∗ (U ,V h)

〉
. Thus,

we need to specify all terms of this expression for the viscoelastic problem. In
particular, the adjoint operator is given by

L∗ (û;V ) =


∇ · χ− 2ηs∇ · ∇sv − ρû · ∇v −∇q

−∇ · v
1

2ηp
χ+∇sv − λ

2ηp

(
û · ∇χ+ χ · (∇û)

T
+∇û · χ

)
 . (38)
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The matrix of stabilisation parameters (α) is taken as diagonal [100], of
the form:

α = diag (α1Id, α2, α3Id×d) , (39)

with Id the identity on vectors of Rd, and Id×d the identity on second order
tensors. The parameters αi, i = 1, 2, 3, are computed following [100] as

α1 =

[
c1
ηs
h21

+ c2
ρ |ûh|
h2

]−1
, (40)

α2 =
h21
c1α1

, (41)

α3 =

[
c3

1

2ηp
+ c4

(
λ

2ηp

|ûh|
h2

+
λ

ηp
|∇ûh|

)]−1
. (42)

In these expressions, h1 corresponds to a characteristic length calculated as
the square root of the element area in the 2D case and the cubic root of the
element volume in 3D, and h2 corresponds to another characteristic length
calculated as the element length in the streamline direction. The term |uh|
is the Euclidean norm of the velocity, and |∇uh| the Frobenius norm of the
velocity gradient (another possibility for this last term is to take the maximum
eigenvalue of the velocity gradient matrix). The constants ci, i = 1, 4 are
algorithmic parameters in the formulation. The values proposed in [10] for
linear elements were c1 = 4.0, c2 = 2.0, c3 = 4.0 and c4 = 0.25. For higher
order elements, the characteristic lengths h1 and h2 are respectively divided
by k2 and k, k being the order of the FE interpolation, and we keep the value
of the constants used for linear elements. In [116], the convection-diffusion-
reaction equation problem was solved using elements of order one up to four,
highlighting the importance of considering the dependence of the constants
that appear in the stabilising terms with k.

Having introduced the matrix of the stabilisation parameters and the ad-
joint operator, the stabilisation terms can be written as:〈

αP̃ [RU ] ,L∗ (Uh,V h)
〉

=
∑
K

α1S1 (uh;Uh,V h) |K

+
∑
K

α2S2 (Uh,V h) |K +
∑
K

α3S3 (uh;Uh,V h) |K . (43)

where
∑
K represents the summation over all the elements of Th. In this ex-

pression, we have not introduced any inter-element boundary terms, which
are unnecessary when all FE unknowns are continuous. The need to introduce
them is commented below.

In (43), we have the following terms that we need to add to the Galerkin
problem, computed in each element as:

S1 (ûh;Uh,V h) |K =
〈
P̃ [Ru] ,L∗u(ûh;Uh,V h)

〉
K
, (44)

S2 (Uh,V h) |K =
〈
P̃ [Rp] ,L∗p(Uh,V h)

〉
K
, (45)
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S3 (ûh;Uh,V h) |K =
〈
P̃ [Rσ] ,L∗σ(ûh;Uh,V h)

〉
K
, (46)

where L∗u(ûh;Uh,V h), L∗p(Uh,V h) and L∗σ(ûh;Uh,V h) are the three com-
ponents of the adjoint operator and Ru, Rp and Rσ represent the residual of
the momentum, continuity, and constitutive equations, respectively, which are
defined as:

Ru =f −
(
ρ
∂uh
∂t
−∇ · σh − 2ηs∇ · ∇suh + ρûh · ∇uh +∇ph

)
, (47)

Rp =−∇ · uh, (48)

Rσ =− 1

2ηp
σh +∇suh

− λ

2ηp

(
∂σh
∂t

+ ûh · ∇σh − σh · ∇ûh − (∇ûh)
T · σh

)
. (49)

With respect to the definition of P̃ , recall that two possible choices are
considered, as in the general case. The first is the ASGS formulation, in which
P̃ = I (the identity) when applied to FE residuals, whereas the second is
P̃ = P⊥h = I − Ph, where Ph is the L2 projection onto the appropriate FE
space.

Remark 5 Independently of the selection of P̃ , either P̃ = I or P̃ = P⊥h ,
the obtained method should display optimal order of convergence for smooth
enough solutions. The above residual-based stabilisation method was proposed
in [10] for the steady state case.

6.1.2 Non-residual-based stabilised finite element formulations

In [10,11,14], the authors found that a residual-based formulation in viscoelas-
tic fluid flows is not always the best option from the point of view of accuracy
and robustness when solving classical viscoelastic benchmarks, such as the 4:1
planar contraction problem and the flow over a confined cylinder problem. If
we consider the case P̃ = P⊥h , from (43) we can design a simplified method,
which consists in neglecting the cross local inner-product terms in (43), as well
as some other terms that do not contribute to stability. In particular, the term
S1(ûh;Uh,V h)|K in (44) can in principle be replaced by〈

P⊥h [∇ · σh] ,∇ · χh
〉
K

+ ρ2
〈
P⊥h [ûh · ∇uh] , ûh · ∇vh

〉
K

+
〈
P⊥h [∇ph] ,∇qh

〉
K
− 4β2η20

〈
P⊥h [∇ · (∇suh)] ,∇ · (∇svh)

〉
K
. (50)

The three first terms in (50) help to improve stability, the first giving control
on the divergence of the viscoelastic stress, the second on the convective term,
and the third one the pressure gradient. The last term can be neglected, as it
does not contribute to stability.
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Remark 6 As already mentioned, the method associated to (43) is consistent
for any projection P̃ , and therefore we might consider P̃ = I − Ph,0 for the
projection applied to the residual of the momentum equation, where Ph,0 is the
L2 projection onto the velocity FE space incorporating boundary conditions,
i.e., the L2 projection onto Vh,0. However, in (50) we need to take P⊥h =
I−Ph, Ph being the L2 projection without boundary conditions, since otherwise
P⊥h (f) would not converge to zero at the optimal order mentioned before. The
price to be paid is that the FE mesh needs to satisfy a mild compatibility
condition, as explained in [117], which is easily fulfilled for most meshes.

It should be noted that, apart from P⊥h , other projections can be used
in (50), as long as one can guarantee that they provide enough stability and
that the consistency error introduced has optimal order. Among these, let
us mention those associated to the Local Projection Stabilisation. For details
about this method, see for example [118,119] in the context of Newtonian
fluids or the work of [70] for viscoelastic fluids. These local projections avoid
the global projection Ph, which requires to solve a linear system; however,
the bottleneck of these methods is that they all increase the sparsity of the
final matrix. This is usually unaffordable, and therefore an iterative strategy
is needed anyway. For another term-by-term approach, only applicable to low
order elements, see [120].

Similar considerations could be applied to modify the term S3(ûh;Uh,V h)
in (46), now taking into account that P⊥h (σh) = 0 (P⊥h being now the orthog-
onal projection to the space of viscoelastic stresses), giving place to a fully
non-residual stabilisation method. Under these considerations, this modified
method will be called fully split OSS method, and reads as: find Uh ∈ X h such
that

(Dt(Uh),V h) +B(uh;Uh,V h) +
∑
K

α1S
⊥
1 (uh;Uh,V h) |K

+
∑
K

α2S
⊥
2 (Uh,V h) |K +

∑
K

α3S
⊥
3 (uh;Uh,V h) |K = 〈F ,V h〉 , (51)

for all V h ∈ X h, where

S⊥1 (ûh;Uh,V h) |K =
〈
P⊥h [∇ · σh] ,∇ · χh

〉
K

+
〈
P⊥h [∇ph] ,∇qh

〉
K

+
〈
P⊥h [ρûh · ∇uh] , ρûh · ∇vh

〉
K
, (52)

S⊥2 (Uh,V h) |K =
〈
P⊥h [∇ · uh] ,∇ · vh

〉
K
, (53)

S⊥3 (uh;Uh,V h) |K =
〈
P⊥h [∇suh] ,∇svh

〉
K

+

(
λ

2ηp

)2 〈
P⊥h [ûh · ∇σh] , ûh · ∇χh

〉
K

−
(
λ

2ηp

)2 〈
P⊥h

[
σh · ∇ûh + (∇ûh)

T · σh
]
,χh · (∇ûh)

T
+∇ûh · χh

〉
K
.

(54)
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The stabilising mechanism introduced by the different terms in these ex-
pressions is clear. Term S⊥1 has already been discussed. Regarding term S⊥3 in
(54) it is observed that the first part has an EVSS-like structure (see [121]),
that now has been derived from a simplification of the OSS method, whereas
the second part has a streamline-upwind structure, but the introduction of the
orthogonal projection P⊥h makes it have an optimal consistency error.

In [10], both the residual and the fully split stabilised FE formulations
presented above were tested exhaustively, concluding that the best option is
an amphibian between a residual-based structure for the constitutive equation
and a non-residual-based structure for the momentum equation. The reason
why it is better to use a residual-based method for the constitutive equation is
explained in [17] in the context of the LCR, and is related to the convergence
of iterative schemes. These turn out to behave much better using the residual-
based formulation because while the residual of the constitutive equation may
be small, each term separately is not, causing difficulties in convergence of the
split version.

From what has been explained, expression (52) is not just a simplification
of (44). In [10], it is emphasised that the “problematic” terms in the residual
formulation that disable it for the calculation of highly elastic fluids are the
cross-terms α1 〈∇ph,−∇ · χh〉K and α1 〈−∇ · σh,∇qh〉K . In the presence of
high gradients of pressure and stresses, such as in the corner of the 4:1 con-
traction, they lead to convergence difficulties for high Weissenberg numbers
and to inaccurate localization of pressure and stress peaks.

With these idea in mind, the stabilised method we recommended is: find
Uh : [0, tf ] −→ X h such that

(Dt(Uh),V h) +B(uh;Uh,V h) +
∑
K

α1S
⊥
1 (uh;Uh,V h) |K

+
∑
K

α2S2 (Uh,V h) |K +
∑
K

α3S3 (uh;Uh,V h) |K = 〈F ,V h〉 , (55)

for all V h ∈ X h, and satisfying the initial conditions in a weak sense. The
projection involved in S2 and S3 may be either P̃ = I or P̃ = P⊥h .

6.1.3 Discontinuity-capturing technique

The stabilised FE formulation presented above yields a globally stable solution,
i.e., norms of the unknowns over the whole domain Ω are bounded. However,
if the solution displays very high gradients, local oscillations may still remain.
This is a known issue in compressible flows, where the high gradients of the ve-
locity and pressure fields make evident the need for some numerical treatment
additional to the stabilised methods. In this context, discontinuity-capturing
(DC) or shock-capturing techniques can be introduced in the numerical for-
mulation. In general, the main idea of any DC technique is to increase the
amount of numerical dissipation in the neighbourhood of layers (see [78,122,
123], for example).
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In viscoelastic flow problems, we can find local instabilities or very high
gradients in the pressure and in the viscoelastic stress components when the
fluid flow finds an abrupt change in the geometry. This gradient can be espe-
cially strong when the amount of elastic component in the fluid is important,
giving place to boundary layers even in creeping flows.

Due to the fact that the constitutive equation is of convective-reactive
nature, the general ideas developed for classical methods can be used in the
viscoelastic problem. At the discrete level, the advection velocity is uh and
the reactive term is proportional to the velocity gradient ∇uh. Therefore, if a
non-consistent artificial diffusion is to be introduced, it must be of the form

kσ = cah1 |uh|+ cbh
2
1 |∇uh| , (56)

where characteristic lengths give dimensional consistency to this numerical
diffusion, and the parameters ca and cb are algorithmic constants.

Remark 7 If an artificial diffusion term is added to problem (55), with the
diffusion given by (56), the consistency error would make the method converge
at most with an order O(h1/2).

In order to design a method that can yield optimal convergence, at least
when the solution is smooth, a possible option is to multiply the diffusion
in (56) by a term proportional to the residual of the equation being solved
properly normalised (see [78] and references therein). In this case, the residual
would be that of the constitutive equation, as in [77]. We have used another
switch to activate the numerical diffusion, which is to make it proportional to
the component of the viscoelastic stress orthogonal to the FE space, that is to
say, we take as diffusion coefficient

kσ =
(
cah1 |uh|+ cbh

2
1 |∇uh|

) ∣∣P⊥h [∇σh]
∣∣

|∇σh|
, (57)

instead of (56). The way to introduce the DC dissipation is to add the term∑
K

kσ 〈∇σh,∇χh〉K ,

to the left-hand-side of (55), where χh is the test function of the constitutive
equation. The algorithmic constants suggested in [10] are ca = 0.1 and cb = 0.5.

6.1.4 Interpolation with discontinuous pressures and stresses

The stabilised FE formulations described above permits the use of equal order
interpolation for all the unknowns. The extension to arbitrary interpolations
can be done adding a single extra term to (51), as was proposed and analysed
in [13].

Let us introduce some notation. The collection of all edges (faces, for d = 3)
of the elements will be denoted by Eh = {E} and, as for the elements, summa-
tion over all these edges will be indicated as

∑
E . Suppose now that elements
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K1 and K2 share an edge E, and let n1 and n2 be the normals to E exterior
to K1 and K2, respectively. For a scalar function g, possibly discontinuous
across E, we define its jump as [[ ng ]]E := n1g|∂K1∩E + n2g|∂K2∩E , and for a
vector or tensor v, [[ n · v ]]E := n1 · v|∂K1∩E + n2 · v|∂K2∩E . When E ⊂ ∂Ω
and n is the external normal, these definitions reduce to [[ ng ]]E := ng|E and
[[ n · v ]]E := n · v|E .

Since velocity components need to belong to a subspace of H1(Ω), conform-
ing approximations require continuity. However, pressures and stress compo-
nents need to belong to a subspace of L2(Ω), and therefore one might use
discontinuous interpolations and still be conforming. If this is the case, formu-
lation (51) is not necessary stable. The terms to stabilise it can be motivated
again by the VMS concept, as explained in [103,55]. In the present context,
the following term needs to be added to the left-hand-side of problem (51):∑

E

α[u] 〈J(nqh − n · χh) + 2ηsn · ∇svhK ,

J(nph − n · σh)− 2ηsn · ∇suhK〉E , (58)

where α[u] represents an additional stabilisation parameter defined as α[u] =
δ0h
2η0

, where δ0 is an algorithmic parameter that can be taken as δ0 = 1
10 [103,

55]. The inclusion of (58) in the stabilisation method allows the use of dis-
continuous pressure and stress interpolations. The numerical analysis of this
method was done in [13] for a linearised version of the Navier-Stokes/Oldroyd-
B case, where it was proved that the method is stable and optimally convergent
for small Weissenberg numbers, independently of the interpolation used.

6.1.5 Time-dependent sub-scales

As mentioned earlier, a VMS stabilised method can be dynamic or quasi-static.
Following the ideas proposed in [17], for residual-based stabilised methods, we
can design a dynamic formulation using Eq. (34), which in this case reads:

ρ
∂ũ

∂t
+ α−11 ũ = P̃ [Ru] , (59)

α−12 p̃ = P̃ [Rp] , (60)

λ

2ηp

∂σ̃

∂t
+ α−13 σ̃ = P̃ [Rσ] . (61)

Using a first order BDF scheme, the velocity and stress sub-scales are obtained
from:

ũn+1 =

(
ρ

δt
+

1

α1

)−1
P̃

[
1

δt
ũn +Ru

]
, (62)

σ̃n+1 =

(
λ

2ηpδt
+

1

α3

)−1
P̃

[
1

δt
σ̃n +Rσ

]
, (63)
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where Ru and Rσ are the FE residual of the momentum and constitutive
equations defined in Eqs. (47) and (49). Note that the continuity equation
does not have time derivative, and therefore, does not play any role in the
dynamic nature of the method. The final dynamic residual-based stabilised
method is obtained after replacing expressions (62) and (63) in the stabilising

term
〈
Ũ ,L∗ (U ,V h)

〉
of Eq. (32). The problem to be solved is thus: find

Uh : [0, tf ] −→ X h such that

(Dt(Uh),V h) +B(uh;Uh,V h)

+
∑
K

〈ũ,∇ · χh − 2ηs∇ · ∇svh − ρuh · ∇vh −∇qh〉K

+
∑
K

〈p̃,−∇ · vh〉K

+
∑
K

〈
σ̃,

1

2ηp
χh +∇sv − λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉 , (64)

for all V h ∈ X h.
In [74] and [17], the idea of non-residual-based dynamic VMS methods was

proposed for the two fields Navier-Stokes problem and for the viscoelastic case.
In those works, contrary to residual-based formulations, it was necessary to
introduce two and three velocity sub-scales, respectively, instead of a single
one that is a function of the FE residual of the momentum equation.

Let us consider expressions (59) and (61), taking into account that P̃ = P⊥h ,

P⊥h [f ] ≈ 0, P⊥h

[
∂uh
∂t

]
= 0 and P⊥h

[
∂σh
∂t

]
= 0. Therefore we can rewrite

them as follows:

ρ
∂ũ

∂t
+ α−11 ũ =P⊥h [∇ · σh] + P⊥h [2ηs∇ · (∇suh)]

− P⊥h [ρuh · ∇uh]− P⊥h [∇ph] , (65)

λ

2ηp

∂σ̃

∂t
+ α−13 σ̃ =− P⊥h

[
1

2ηp
σh

]
+ P⊥h [∇suh]− P⊥h

[
λ

2ηp
uh · ∇σh

]
+ P⊥h

[
λ

2ηp

(
σh · ∇uh + (∇uh)T · σh

)]
. (66)

The key ingredient that allows us to consider only any of these terms is the
orthogonal projection P⊥h . The right-hand-side (RHS) of (65) and (66) is not
zero when the FE solution is replaced by the continuous solution, and con-
sequently the method is not consistent. Nevertheless, the consistency error is
optimal [117]. Additionally, some of the terms in the RHS of (65) and (66)
can be neglected, like the second term of (65), because they do not contribute
to stability. The three remaining terms help to improve stability, the first one
giving control of the divergence of the viscoelastic stresses, the the third one
on the convective term and the fourth one on the pressure gradient. Similar
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considerations can be applied to modify equation (66), now considering that
P⊥h (σh) = 0.

As explained earlier, the previous splitting and simplification technique
results in an a priori weakly consistent method. However, when the splitting
approach is used in (66), the method fails to converge when applied to simple
numerical tests as explained before in the context of quasi-static sub-scales.

In view of these remarks, we can split ũ = ũ1 + ũ2 + ũ3, while the stress
sub-grid scale remains as σ̃. The sub-grid scales ũ1, ũ2, ũ3, p̃, are the solution
of the evolution problems:

ρ
∂ũ1

∂t
+ α−11 ũ1 = −P⊥h [ρuh · ∇uh] , (67)

ρ
∂ũ2

∂t
+ α−11 ũ2 = −P⊥h [∇ph] , (68)

ρ
∂ũ3

∂t
+ α−11 ũ3 = P⊥h [∇ · σh] , (69)

while the sub-grid scale σ̃ is the solution of (66).
Therefore, the term-by-term FE formulation proposed consists in finding

Uh : [0, tf ] −→ X h such that

(Dt(Uh),V h) +B(uh;Uh,V h) +
∑
K

〈ũ1,−ρuh · ∇vh〉K

+
∑
K

〈ũ2,−∇qh〉K +
∑
K

〈ũ3,∇ · χh〉K +
∑
K

〈p̃,−∇ · vh〉K

+
∑
K

〈
σ̃,

1

2ηp
χh +∇sv − λ

2ηp

(
uh · ∇χh + χh · (∇uh)T +∇uh · χh

)〉
K

= 〈f ,vh〉 , (70)

for all V h ∈ X h and satisfying the initial conditions in a weak sense. This
problem is alternative to (64).

As for the quasi-static sub-scale version, the proposed method is not residual-
based, and therefore, it is not consistent in the FE sense, although it has an
optimal consistency error. Problem (70) is the dynamic counterpart of the
formulation we propose in the quasi-static case, given in Eq. (55).

6.2 The logarithmic viscoelastic problem

Following the same nomenclature and structure used in the standard viscoelas-
tic problem, we present now stabilised VMS FE formulations for the logarith-
mic reformulated problem. In essence, the difference is the change of variables
in the stress unknown. Recall that in the variational formulation we have not
made this change of variables in the stress test function.

We will not discuss in this section the issues related neither to discontinuous
pressure or stress interpolation nor to the convenience of using discontinuity-
capturing techniques. Their use in the LCR would be straightforward.
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6.2.1 Residual-based stabilised finite element formulations

As for the standard case, let us start considering quasi-static sub-scales. A
residual-based VMS method for the LCR case consists in adding to the Galerkin
problem (Eq. (25)) a stabilised term of the form given again by Eq. (43), but
now with different terms involved. Observe that this implies that we have also
taken matrix α as diagonal; in fact, we compute it for the LCR exactly as for
the standard case, i.e., the diagonal components of α are given by Eqs. (40)-
(42). This is because the change of variables made does not affect the terms
from where the stabilisation parameters come.

Since for the LCR we have made a change of variables only in the stress
unknown and not in the stress test function, we can use the same adjoint
operator for a given velocity û, given by Eq. (38).

Formally, the terms S1, S2, and S3 are again given by Eqs. (44)-(46),
again with the components of the adjoint operator given in Eq. (38). What
is different with respect to the standard formulation is the expression of the
residuals, which are now given by:

Ru =f +
1

2λ0
I −

(
ρ
∂uh
∂t
− ηp
λ0
∇ · exp(ψh)− 2ηs∇ · (∇suh)

+ ρûh · ∇uh +∇ph
)
, (71)

Rp =−∇ · uh, (72)

Rσ =− 1

2λ0
exp(ψh) +∇suh −

λ

2λ0

(
∂ exp(ψh)

∂t
+ ûh · ∇ exp(ψh)

)
+

1

2λ0

(
exp(ψh) · ∇ûh + (∇ûh)T · exp(ψh)− 2∇suh

)
. (73)

Again, for the definition of P̃ , two natural options are P̃ = P⊥h = I − Ph
and Ph = I, leading respectively to the OSS and the ASGS formulations. The
formulation is complete with the linearisation of the exponential described
later.

6.2.2 Non-residual-based stabilised finite element formulations

One of the key ingredients in stabilised FE methods proposed by our group in
the context of viscoelastic fluids and summarised in thxis article is the non-
residual-based alternative, which in the VMS framework is not common. In
the original articles [10,16], hybrid methods, that mix a residual approach for
the continuity and constitutive equations and a term-by-term structure for the
momentum equation, were presented as the most robust option after solving
classical benchmarks problems. This conclusion was the same both for the
standard and the LCR approaches.
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The formulation we favour has again the general form of Eq. (55) intro-
duced for the standard method, but now with:

S⊥1 (ûh;Uh,V h) =

〈
P⊥h

[
ηp
λ0
∇ · exp(ψ)

]
,∇ · χh

〉
+
〈
P⊥h [∇ph],∇qh

〉
+
〈
P⊥h [ρûh · ∇uh], ρûh · ∇vh

〉
, (74)

using P̃ = P⊥h . This change of structure in the stabilisation method that
comes from taking S⊥1 instead of S1 is not just a simplification. For smooth
solutions, both have an optimal convergence rate in h. However, in problems
where the solution has strong gradients, we have found the term-by-term one
more robust, similarly to what it is explained in [14].

6.2.3 Time-dependent sub-scales

In the same way as described for the standard case, a dynamic formulation
that takes into account the evolutionary component of the sub-scale can be
designed for the LCR problem. Again, residual-based or term-by-term methods
can be obtained.

In the case of the residual-based option, the formulation with dynamic sub-
scales has exactly the same expression as for the standard formulation, i.e.,
that given by Eq. (64), but now with the sub-scales being the solution of:

ρ
∂ũ

∂t
+ α−11 ũ =P̃

[
f −

(
ρ
∂uh
∂t
− ηp
λ0
∇ · exp(ψh)

)]
+ P̃ [−2ηs∇ · (∇suh) + ρuh · ∇uh +∇ph] ,

α−12 p̃ =P̃ (−∇ · uh) ,

λ

2ηp

∂σ̃

∂t
+ α−13 σ̃ =P̃

[
− 1

2λ0
exp(ψh) +∇suh −

λ

2λ0

∂ exp(ψh)

∂t

]
− λ

2λ0
P̃ [uh · ∇ exp (ψh)− exp(ψh) · ∇uh]

− λ

2λ0
P̃
[
−(∇uh)T · exp(ψh) + 2∇suh

]
,

and considering σ̃ =
ηp
λ0

(
exp

(
ψ̃
)
− I

)
.

For the term-by-term formulation, the same reasoning as for the standard
case can be repeated. In this way we arrive at the same problem (70), the only
difference being that now the sub-scale ũ3 is the solution of:

ρ
∂ũ3

∂t
+ α−11 ũ3 = P⊥h

[
ηp
λ0
∇ · exp(ψh)

]
,

instead of Eq. (69).
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7 Computational aspects

7.1 Fully discrete and linearised problem: standard case

The numerical approximation of incompressible viscoelastic flows involves deal-
ing with several non-linear terms. On the one hand, the momentum equation
has the convective term, and on the other, the constitutive equation has an-
other convective term related to the stresses and, additionally, the rotational
terms arising from the objective derivative. Furthermore, at the discrete level
and using any of the stabilisation methods reviewed in this article, the sta-
bilisation terms depend also on the velocity, introducing, therefore, additional
nonlinearities.

Based on the ideas proposed in [11,12], the following remarks need to be
taken into account:

– The nonlinear term in the momentum equation can be linearised indis-
tinctly with the fixed point scheme or with Newton-Raphson’s method.

– Only a fixed point scheme is considered for the stabilisation terms of the
constitutive equation.

– The stabilisation parameters are computed with values of the unknowns at
the previous iterations.

– The orthogonal projection of any function f has been approximated iter-
atively as P⊥h (f i) ≈ f i − Ph(f i−1), where i represents the non-linearity
iteration counter. Note that the iterative treatment of the orthogonal pro-
jection is thus coupled to the linearisation of the whole system.

– The discontinuity-capturing dissipation, when used, is linearised using a
fixed point strategy.

Details of the linearisation strategies can be found in the original references.

7.2 Linearisation of the exponential

In the logarithmic reformulation case, apart from the well-known non-linearities
associated with the standard viscoelastic problem, a treatment for the lineari-
sation of the exponential function of a tensor needs to be taken into account.
Following the ideas proposed in [16], we can write:

exp(ψ) = exp(ψ̂ + δψ) = exp(ψ̂) · exp(δψ),

where δψ = ψ−ψ̂ and ψ̂ is a known tensor, which in practice will be calculated
at the previous iteration in the linearisation scheme. Assuming δψ to be small
(in a certain sense), the term exp(δψ) can been linearised through a Taylor
expansion with a truncation error of order (δψ)2:

exp(δψ) ≈ I + δψ.

Consequently,

exp(ψ) ≈ exp(ψ̂) · (I + δψ) = exp(ψ̂) ·ψ + exp(ψ̂) · (I − ψ̂). (75)
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So, inserting this approximation into system (10)-(12), this system is linearised
around ψ̂ as

ρ
∂u

∂t
− ηp
λ0
∇ · (exp(ψ̂) ·ψ)− 2ηs∇ · (∇su) + ρu · ∇u+∇p

= f +
ηp
λ0
∇ · (− exp(ψ̂) · ψ̂ + exp(ψ̂)),

∇ · u = 0,

1

2λ0
exp(ψ̂) ·ψ −∇su+

λ

2λ0

(
∂(exp(ψ̂) ·ψ)

∂t
+ u · ∇

(
exp(ψ̂) ·ψ

))

− λ

2λ0

(
exp(ψ̂) ·ψ · ∇u+ (∇u)

T · exp(ψ̂) ·ψ − 2∇su
)

=
1

2λ0
(I − exp(ψ̂) + exp(ψ̂) · ψ̂) +

λ

2λ0

(
∂(exp(ψ̂) · ψ̂)

∂t
−∂ exp(ψ̂)

∂t

)

+
λ

2λ0

(
u · ∇

(
exp(ψ̂) · ψ̂ − exp(ψ̂)

)
+
(
− exp(ψ̂) · ψ̂ + exp(ψ̂)

)
· ∇u

+(∇u)T ·
(
− exp(ψ̂) · ψ̂ + exp(ψ̂)

))
.

The variational formulation of this problem is straightforward.
A remark is needed for the time derivative of the exponential. Using ap-

proximation (75), it is easily shown that the operations “linearisation” and

“time approximation” commute if we identify ψ̂
n

= ψn, being n the previous
time step. Indeed, in both cases we obtain:

∂(exp(ψ))

∂t

∣∣∣∣
tn+1

=
1

δt

[
exp(ψ̂

n+1
) ·ψn+1 + exp(ψ̂

n+1
)− exp(ψ̂

n+1
) · ψ̂

n+1

− exp(ψn)
]

+O(δt) +O((δψn+1)2).

7.3 Fully discrete and linearised problem: logarithmic case

It is clear that the nonlinearities of the standard formulation are maintained
with the logarithmic reformulation, and new non-linearities arising from the
exponential function appear, as it has been exposed when the continuous prob-
lem has been described.

For the convective term of the momentum equation we can use a fixed
point scheme or Newton-Raphson’s scheme. However, for the nonlinear terms
in the constitutive equation, we always use a Newton-Raphson linearisation,
and it has been decisive to be able to compute some high Weissemberg cases
and get the optimal convergence of the method.

Let us make the following remarks about the algorithm used:

– The nonlinear term in the momentum equation can be linearised with the
fixed point scheme or with Newton-Raphson’s method, although for the
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LCR we favour the latter, particularly for the linearisation of the exponen-
tial, as described above. A close enough initial guess can be obtained using
the continuation in the Weissemberg and Reynolds numbers.

– The exponential terms that appear both in the momentum equation and in
the constitutive equation have been linearised as described in the previous
subsection, taking tensor ψ̂ as the one obtained from the previous iteration
of the current time step.

– All non-linear terms belonging to the constitutive equation, both in the
Galerkin terms and in the stabilisation, have been linearised using Newton-
Raphson’s method described above.

– The stabilisation parameters are computed with the values of the unknowns
at the previous iterations.

– The iterative treatment of the orthogonal projection is coupled to the lin-
earisation of the total system. The same treatment used for the orthogonal
projection in the standard formulation can be used.

Apart from the linearisation carried out in some terms just explained, we
have found extremely useful the application of other techniques that lead to
better convergence. One of them is under-relaxation, taking as a relaxation
parameter ε = 0.5, which has been found useful in most of the cases; the
second tool employed is the continuation method in terms of the relaxation
time λ, which consists in Nλ continuation steps of equal size δλ = λ/Nλ. Note
that continuation techniques can be employed because of the modification of
the log-conformation formulation; if the original logarithmic formulation had
been taken, they could not be used. Besides, the continuation loop and the
linearisation loop can be coupled in the non-linear loop as it is explained in
[16].

7.4 Solution strategies for the stabilised viscoelastic flow problem

The solution of the viscoelastic flow problem has several difficulties, as ex-
plained in the previous sections. One of them is precisely the lack of con-
vergence of the non-linear iterative scheme, which leads to the need of using
formulations such as the log-conformation reformulation presented in Section
3.2. This is however not the only numerical difficulty faced when dealing with
the viscoelastic flow problem: another important aspect is the need of solv-
ing the linear systems of equations arising at each non-linear iteration of the
discretised FE problem, either for the standard or the log-conformation for-
mulations.

A linear system solution strategy needs to be devised, specifically for the
viscoelastic flow problem, which allows for its efficient solution. This is so,
because apart from the several heavily non-linear and element-by-element sta-
bilisation terms that might spoil the condition number of the problem, the
nature of the viscoelastic equations make it impossible to eliminate or reduce
the stress unknown. This causes that if, for instance, an equal order inter-
polation FE discretisation is used, the number of unknowns per node rises
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from four (three for the velocity, and one addition unknown for the pressure),
for the standard incompressible Navier-Stokes equations, to ten (including the
same unknowns plus six extra unknowns for the stress tensor), for either the
standard and the log-conformation viscoelastic flow problem. Moreover, the
resulting problem is of saddle-point type, with possibly null terms (before ap-
plying stabilisation) both in the velocity and pressure diagonal blocks of the
linear system.

Direct linear system solvers are usually not affordable due to its high com-
putational cost. As the discretisation accuracy increases and the number of
unknowns becomes large, the condition number of the resulting linear system
of equations worsens, which makes it difficult for iterative solvers to deal with
the problem. Apart from the usage of general available efficient solvers such as
multigrid preconditioners, one can rely on specific solvers or preconditioners
for the viscoelastic flow problem. In this sense, the usage of a fractional step
scheme which allows one to separate the solution of the velocity, pressure and
stress unknowns is very convenient.

There have been several proposals of fractional step methods for viscoelas-
tic flow problems. The Θ-method, originally proposed in [124] for Newtonian
fluids and later extended to viscoelastic flows in [125,126] is one of the most
popular ones. It consists in splitting the viscoelastic flow problem into a Stokes
system where the stress is treated explicitly, followed by a transport problem
for the constitutive equation and an additional Stokes problem which is used
to improve the stability of the global system. The method is reported to be
second order accurate for proper Θ values, and it has been extensively studied
(see for instance the a priori error estimates presented in [127]). A second or-
der in time two-step decoupling method for modelling inertialess viscoelastic
fluids was presented in [128]. This method was extended to solve fluid flows
with inertia in [129]. In this method, the first step consists of the computation
of the elastic stress by using the velocity of the previous time step. Then the
elastic stress is used explicitly as a force term in the momentum equation.
Second order accuracy is reported for the method. In [130], an extension is
presented of the fourth step fractional step method proposed in [131] for the
standard Navier-Stokes problem, now using the Oldroyd-B constitutive model
and the DEVSS-G/DG stabilisation technique.

In our group, we have been working on several fractional step methods (see
[11]) with first, second and third order splitting errors. We summarise now the
general approach pursued in these strategies. The methods are going to be
explained for the standard formulation, although they can be extended to the
log-conformation reformulation.

For the exposition of the fractional step approach, it is convenient to write
the problem (16)-(18) after its time discretisation in algebraic form. For sim-
plicity, we will not include stabilisation terms, although they need to be in-
cluded if arbitrary interpolation spaces for the unknowns are used, or if con-
vection is dominant. Matrices will be written with light case italic characters.
In the case of elastic stresses, the Voight notation will be employed. Having
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this notation in mind, the algebraic structure of the problem is:

Mu
δk
δt

Un+1 +Ku
(
Un+1

)
Un+1 +GPn+1 −DσΣn+1 = Fn+1, (76)

DUn+1 = 0, (77)

Mσ
δk
δt
Σn+1 +Kσ

(
Un+1

)
Σn+1 − SUn+1 = 0. (78)

The dependence of matrices Ku and Kσ on U has been explicitly displayed.
The identification of the different terms that contribute to the matrices in
these expressions is straightforward.

System (76)-(78) can be written asA11 A12 A13

A21 A22 0
A31 0 0

Un+1

Σn+1

Pn+1

 =

Fn+1
1

Fn+1
2

Fn+1
3

 , (79)

where

A11 =
1

γkδt
Mu +Ku

(
Un+1

)
, A12 = −Dσ, A13 = G,

A21 = −S, A22 =
1

γkδt
Mσ +Kσ

(
Un+1

)
, A31 = D,

F1 = Fn+1 +
1

δtγk

(
k−1∑
i=0

ϕikU
n−i

)
, F2 =

1

δtγk

(
k−1∑
i=0

ϕikΣ
n−i

)
, F3 = 0.

The ordering of the equations chosen is consistent with the steps of the splitting
algorithm described below.

The fractional step method presented next can be viewed as an extension of
pressure-segregation or pressure-correction schemes applied to the viscoelastic
fluid flow problem. Instead of calculating the velocity with a guess of the
pressure only, now we will need a guess of the elastic stresses as well. After
computing these two fields, velocities will be corrected.

To derive the method, equations (76)-(78) need to be rewritten in the
equivalent form

Mu
δk
δt

Ũn+1 +Ku(Ũn+1)Ũn+1 +GP̂n+1
k′−1 −DσΣ̂

n+1

k′−1 = Fn+1, (80)

Mu
1

γkδt
(Un+1 − Ũn+1)

+Nn+1
u +G(Pn+1 − P̂n+1

k′−1)−Dσ(Σn+1 − Σ̂
n+1

k′−1) = 0, (81)

Mσ
δk
δt
Σ̃
n+1

+Kσ(Ũn+1)Σ̃
n+1 − SŨn+1 = 0, (82)

Mσ
1

γkδt
(Σn+1 − Σ̃n+1

) + Nn+1
σ − S(Un+1 − Ũn+1) = 0, (83)

−DŨn+1 + γkδtDM
−1
u Nn+1

u + γkδtDM
−1
u G(Pn+1 − P̂n+1

k′−1)
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−γkδtDM−1u Dσ(Σn+1 − Σ̂
n+1

k′−1) = 0, (84)

where

Nn+1
u = Ku(Un+1)Un+1 −Ku(Ũn+1)Ũn+1,

Nn+1
σ = Kσ(Un+1)Σn+1 −Kσ(Ũn+1)Σ̃

n+1
.

In these equations, Ũn+1 and Σ̃
n+1

are auxiliary variables, ĝn+1
k′−1 is the ex-

trapolation of order k′−1 at tn+1 of a function g, and it is understood that the
difference δkg̃

n+1 is computed from g̃n+1 and gm, for time steps m previous
to n+ 1, g now being either U or Σ.

In the previous equations, k determines the order of the time integration
scheme and k′ the order of the extrapolations to uncouple variables. They
can be chosen independently, but need to be adequately balanced to achieve
a certain order of the final approximation.

The final algorithm for first and second order schemes is displayed in Al-
gorithm 1. Details on how to extend the fractional step algorithm to third
order accuracy can be found in [11]. The extension is not straightforward due
to stability issues appearing if Algorithm 1 is applied with third order extrap-
olations.

The scheme resulting from Algorithm 1 can be used to solve the viscoelas-
tic flow problem directly, or it can be used as a preconditioner for the original
monolithic system if splitting errors want to be avoided. In this sense, another
possibility is to try to obtain a pseudo algebraic fractional step method di-
rectly from the assembled system of equations for the monolithic viscoelastic
problem, as done for instance for the incompressible Navier-Stokes equations
in [132]. In our experience, however, a tailored fractional step approach such
as Algorithm 1 turns out in a more stable algorithmic process.

8 Some numerical analysis results

In this section, some results of the numerical analysis of the formulations
discussed are presented. In the first and second subsections, the linearised
standard and the linearised logarithmic formulation are analysed in a mesh-
dependent norm and in a natural norm, both following the same methodology;
the results to be presented are proved in [13,98], respectively. The last section
presents the results of the full nonlinear problem discretised only in space,
which are proved in [15].

8.1 The stationary standard linearised viscoelastic problem

We shall consider first the stationary an linearised form of the problem pre-
sented in Subsection 3.1. Calling a a given velocity field resulting from the
(fixed point) linearisation, the equations to be solved are

ρa · ∇u−∇ · (2ηs∇su+ σ) +∇p = f in Ω, (85)
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Algorithm 1 First and second order fractional step schemes (k = 1, 2)

1. Intermediate velocity using the pressure and the elastic stress values ex-
trapolated:

Mu
δk
δt

Ũn+1 +Ku(Ũn+1)Ũn+1 +GP̂n+1
k−1 −DσΣ̂

n+1

k−1 = Fn+1 → Ũn+1

2. Intermediate elastic stress values using the intermediate velocity:

Mσ
δk
δt
Σ̃
n+1

+Kσ(Ũn+1)Σ̃
n+1 − SŨn+1 = 0→ Σ̃

n+1

3. Intermediate pressure calculation using the intermediate velocity and elas-
tic stress:

−DŨn+1 + γkδtDM
−1
u G(P̃n+1 − P̂n+1

k−1)− γkδtDM−1u Dσ(Σ̃
n+1 − Σ̂

n+1

k−1)

= 0→ P̃n+1

4. Velocity correction:

1

γkδt
Mu(Un+1 − Ũn+1) +G(P̃n+1 − P̂n+1

k−1)−Dσ(Σ̃
n+1 − Σ̂

n+1

k−1)

= 0→ Un+1

5. Elastic stress correction:

1

γkδt
Mσ(Σn+1 − Σ̃n+1

)− S(Un+1 − Ũn+1) = 0→ Σn+1

6. Pressure correction: Pn+1 = P̃n+1 → Pn+1.

∇ · u = 0 in Ω, (86)

1

2ηp
σ −∇su+

λ

2ηp

(
a · ∇σ − σ · ∇a− (∇a)T · σ

)
= 0 in Ω. (87)

Setting the variational form of this problem and the Galerkin approximation
is straightforward, following what has been presented in Subsection 3.1. In
the FE approximation, a needs to be approximated by a FE function (its
interpolant, for example), that we shall denote by ah.

8.1.1 Stabilised finite element method

The stabilised FE approximation we consider now is based on the formula-
tion detailed in Subection 6.1.2, considering now the problem stationary and
using the residual form of the stabilisation term of the constitutive equation.
Moreover, we shall also introduce interelement boundary terms that allow one
to use discontinuous pressure and stress interpolations. The discrete problem
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consists in finding Uh ∈ X h such that

Bstab (Uh,V h) =B (Uh,V h) + S⊥1 (Uh,V h)

+ S⊥2 (Uh,V h) + S⊥3 (Uh,V h) = 〈f ,vh〉 (88)

for all V h ∈ X h where the stabilisation terms of each equation are defined as

S⊥1 (Uh,V h) =
∑
K

α1

〈
P⊥u [ρah · ∇uh] , P⊥h [ρah · ∇vh]

〉
K

+
∑
K

α1

〈
P⊥u [∇ph] , P⊥h [∇qh]

〉
K

+
∑
K

α1

〈
P⊥u [∇ · σh] , P⊥u [∇ · χh]

〉
K

+
∑
E

α[1] 〈 [[ (nqh − n · χh) + 2ηsn · ∇svh ]] ,

[[ (nph − n · σh)− 2ηsn · ∇suh ]] 〉E (89)

S⊥2 (Uh,V h) =
∑
K

α2

〈
P⊥p [∇ · uh] , P⊥p [∇ · vh]

〉
K
, (90)

S⊥3 (Uh,V h) =
∑
K

α3

〈
P⊥σ [Rσ] ,

P⊥σ

[
∇svh −

λ

2ηp

(
ah · ∇χh + χh · (∇ah)

T
+∇ah · χh

)]〉
K

(91)

In the last expression, Rσ represents the residual of the constitutive equation
without the stress, given by

Rσ = ∇suh −
λ

2ηp

(
ah · ∇σh − σh · ∇ah − (∇ah)

T · σh
)

In the numerical analysis below we will also use the notation

σh · ∇ah + (∇ah)
T · σh = σ̇∗h + σ̇∗∗h , σh · (∇ah)

T
+∇ah · σh = σ̇∗h − σ̇

∗∗
h ,

where σ̇∗h = σh · ∇sah + ∇sah · σh and σ̇∗∗h = σh · ∇asah − ∇asah · σh. In
these expressions, ∇asah represents the skew-symmetric part of the velocity
gradient, given by

∇asah =
1

2
[∇ah − (∇ah)T ]. (92)

In (89)-(91), as explained in Remark 6 in Section 6.1.2, P⊥u represents the
projection L2-orthogonal to the velocity space without boundary conditions,
P⊥p the projection L2-orthogonal to the pressure space and P⊥σ the projection
L2-orthogonal to the stress space. We will also need to use the L2-projection
onto the velocity space with boundary conditions, Vh, that we will denote
by Pu,0. The last term in S⊥1 is an approximation to the subscales on the
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element boundaries and allows us to consider discontinuous interpolations for
the pressure and the stress.

Lastly, the stabilisation parameters αi, i = 1, 2, 3 are computed within each
element K as defined in Section 6.1.1. For the linearisation of the problem
the velocity uh is replaced by the advection velocity ah in the definition of
these parameters. Regarding the boundary stabilisation parameter in S⊥1 , it
is defined as α[1] = δ0h

2µ , as in [103,55], where δ0 is an algorithmic parameter
that can be taken as δ0 = 0.1.

8.1.2 Stability and convergence in a mesh-dependent norm

In this subsection, we first state stability in the form of an inf-sup condition
in a mesh dependent norm that depends on the stabilised formulation used,
and next we state convergence using the same norm.

To state these results, we will need a condition on the interpolating spaces
that holds in the case of equal order interpolations. It can be written as:

Assumption H1 Given ah,vh ∈ Vh, qh ∈ Qh,χh ∈ Υ h and

zh := ρah · ∇vh +∇qh −∇ · χh, there holds

‖zh‖ ≤ cm
(
‖Pu,0 [zh]‖+

∥∥P⊥u [zh]
∥∥) , for a constant

cm > 0.

According to this condition, the component of Pu (zh) that corresponds to the
boundary of Ω can be bounded in terms of the right-hand-side of the inequality
in H1. For a piecewise linear velocity ah this assumption is known to hold;
here we assume that ah is such that it is satisfied. Note that cm may depend
on the different components of zh, but not on its Euclidean norm.

The norm employed to obtain the results is as follows:

‖V h‖2W = 2ηs ‖∇svh‖2 +
1

ηp
‖χh‖

2

+
∑
K

α1 ‖ρa · ∇vh +∇qh −∇ · χh‖
2
K

+
∑
K

α1

∥∥P⊥u [ρa · ∇vh]
∥∥2
K

+
∑
K

α1

∥∥P⊥u [∇qh]
∥∥2
K

+
∑
K

α1

∥∥P⊥u [∇ · χh]
∥∥2
K

+
∑
K

α2 ‖∇ · vh‖2K

+
∑
K

α3

∥∥∥∥−∇svh +
λ

2ηp
(a · ∇χh − χ̇∗∗h )

∥∥∥∥2
K

+
∑
E

α[1] ‖ [[ nqh − n · χh ]]‖2E , (93)

If β is very small (or β = 0), control on the velocity gradient can be obtained
from the term multiplied by α3. However, to simplify the analysis, we will
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consider β > 0, and that the stability provided by the first term in the right
hand side of (93) is sufficient.

Then, considering the working norm (93) and supposing that H1 holds,
for λ small enough, there is a constant C > 0 such that

inf
Uh∈Xh

sup
V h∈Xh

Bstab(Uh,V h)

‖Uh‖W ‖V h‖W
≥ C,

provided the constants ci, i = 1, .., 4 defined in (40)-(42) are large enough.
Therefore this result ensures stability of the stabilised method. The proof of
this result is detailed in [13].

On the other hand, the convergence of the method is also proved in [13].
For this, we have to properly define the interpolation errors εi(v). Considering
a FE space Wh, made of piecewise continuous polynomial functions of degree
kv; given a function v ∈ Hk′v+1(Ω), for i = 0, 1 the interpolation errors εi(v)
are defined as

inf
vh∈Wh

∑
K

‖v − vh‖Hi(K) ≤ Ch
k′′v+1−i

∑
K

‖v‖
Hk
′′
v +1(K)

=:
∑
K

εi,K(v) =: εi(v)

(94)

where k′′v = min(kv, k
′
v). We will denote from this point by ṽh the best approx-

imation of v in Wh. Note that ε0(v) = hε1(v).
The main result we obtained (see [13]) is that the error function of the

method we consider is:

E(h) :=
√
η0ε1(u) +

√
η0
∑
K

√
ReKε1,K(u) +

1
√
η0
ε0(σ)

+
1
√
η0

∑
K

√
WeKε0,K(σ) +

1
√
η0
ε0(p), (95)

where

ReK :=
ρ ‖a‖L∞(K) h

η0
, WeK :=

λ ‖a‖L∞(K)

h
(96)

are the element (or cell) Reynolds and Weissenberg numbers, respectively.
More precisely, we proved that there exists a constant C > 0 such that

‖U −Uh‖W ≤ CE(h). (97)

8.1.3 Stability and convergence in a natural norm

Stability and convergence can be proved not only for the mesh-dependent
norm, but also for a natural norm (or a norm in the space where the con-
tinuous problem is defined). We have to remark that since the natural norm
does not include any control on the convective terms, nor does stability and
convergence in this norm. These results will only be meaningful in the case of
small cell Reynolds numbers and small cell Weissenberg numbers. Under the
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same assumptions considered for the stability in a mesh-dependent norm, the
solution of the discrete problem Uh = [uh, ph,σh] ∈ X h can be bounded as
follows:

√
η0 ‖uh‖H1(Ω) +

1
√
η0
‖σh‖+

1
√
η0
‖ph‖ ≤ C

1
√
η0
‖f‖H−1(Ω) .

Also, if the solution of the continuous problem is regular enough, the next
error estimate can be proved:

√
η0 ‖u− uh‖H1(Ω) +

1
√
η0
‖σ − σh‖+

1
√
η0
‖p− ph‖ ≤ CE(h).

Lastly, to complete the analysis of the problem, an L2-error estimate for
the velocity field can be obtained. Assuming the same hypothesis used in the
stability and convergence for natural norms and supposing that an elliptic
regularity condition is satisfied by the continuous problem, we have

√
η0 ‖u− uh‖ ≤ Ch

(
√
η0 ‖u− uh‖H1(Ω) +

1
√
η0
‖σ − σh‖+

1
√
η0
‖p− ph‖

)
.

8.2 The stationary logarithmic linearised viscoelastic problem

All the details concerning the reformulation of the standard equations into
the logarithmic formulation can be found in Section 3.2. In this case, the same
methodology as in the standard case detailed in the previous sections can be
followed, and similar results can be proved.

8.2.1 Linearised problem and Galerkin FE discretisation

To motivate the linearised problem we analysed (see [98]), let us consider
the Newton-Raphson linearisation explained in Section 7.2. Since we consider
exp(ψ̂) and ψ̂ known, we can denote these tensors as E = exp(ψ̂) and S = ψ̂,
respectively, and introduce R = E · S − E. The linearised equations of the
log-conformation formulation are now expressed as follows:

− ηp
λ0
∇ · (E ·ψ −R)− 2ηs∇ · (∇su) + ρa · ∇u+∇p = f ,

∇ · u = 0,

1

2λ0
(E ·ψ −R− I)−∇su+

λ

2λ0
(a · ∇ (E ·ψ −R)

− (E ·ψ −R) · ∇a− (∇a)T · (E ·ψ −R) + 2∇su
)

= 0,

where the unknowns are the velocity, the pressure, and tensor ψ. Again, a
is the velocity of advection which is known, approximated by ah in the FE
approximations. Note the presence of the last term 2∇su, which has a crucial
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role in the dependence of the error estimate to be stated with the Weissenberg
number.

Regarding the variational formulation for the logarithmic reformulation in
the linearised form, the weak form consists in finding U = [u, p,ψ] ∈ Xψ :=
V ×Q× Υψ such that

ηp
λ0

(E ·ψ,∇sv) + 2(ηs∇su,∇sv) + 〈ρa · ∇u,v〉 − (p,∇ · v)

= 〈f ,v〉+
ηp
λ0

(R,∇sv),

(q,∇ · u) = 0,

1

2λ0
(E ·ψ,χ)− (∇su,χ) +

λ

2λ0
(a · ∇ (E ·ψ)−E ·ψ · ∇a

−(∇a)T ·E ·ψ + 2∇su,χ
)

=
1

2λ0
(I +R,χ)

+
λ

2λ0
(a · ∇R,χ) +

λ

2λ0

(
−R · ∇a− (∇a)T ·R,χ

)
,

for all V = [v, q,χ] ∈ X , where it is assumed that f , R and E are such that
the known terms are well defined. The details about spaces where variables
are defined can be found in Section 3.3. Similarly to the standard case, the
problem can be written in compact form as:

B(U ,V ) = L(V ),

with the obvious identification of B and L.
As explained in Section 3.3, the test function χ is a stress, whereas the

dimensionless unknown ψ is the logarithm of the conformation tensor. We
could also have used a test function for the constitutive equation of the form
ηp
λ0

exp(χ), where now χ would be dimensionless. This would simplify the anal-
ysis (some stability would follow taking χ = ψ), but complicate significantly
the FE approximations described below. Note that, strictly speaking, the space
of stress test functions could be taken as the L2 projection onto L2(Ω)d×d of
functions of the form exp(ψ) · ϕ properly scaled, for example by a factor

ηp
λ0

,
with ϕ belonging to the space of trial solutions.

The following condition will be needed:

Assumption H2 E and R have components in L∞(Ω).

E is invertible with a bounded inverse.

Concerning the Galerkin FE discretisation, the condition that the con-
vective derivative of the stress be square integrable will follow from H2 and
choosing the stresses continuous. Calling X h := Vh ×Qh × Υ h, the Galerkin
FE approximation of the problem consists in finding Uh ∈ X h, such that:

Bψ(Uh,V h) = L(V h), (98)
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for all V h = [vh, qh,χh] ∈ X h, where Bψ is obtained from B replacing E ·ψh
by Pψ(E ·ψh), where Pψ is the L2 projection onto Υ h.

As in the standard formulation, problem (98) lacks stability unless appro-
priate inf-sup conditions hold. Likewise, convective terms are not bounded,
and these may dominate those that can be controlled.

8.2.2 Stabilised finite element method

As in the linearised standard case, the numerical method we analysed is a non-
residual type stabilisation. This method has been detailed in Section 6.2.2. It
reads: find Uh ∈ X h such that

Bstab(Uh,V h) = Bψ(Uh,V h) + S⊥1 (Uh,V h)

+ S⊥2 (Uh,V h) + S⊥3 (uh;Uh,V h) = L(V h)

for all V h ∈ X h, where now the linearisation terms are:

S⊥1 (Uh,V h) =
∑
K

αu

〈
P⊥u

[
− ηp
λ0
∇ · Pψ[E ·ψh]

]
,−∇ · χh

〉
K

+
∑
K

α1

〈
P⊥u [∇ph],∇qh

〉
K

+
∑
K

α1

〈
P⊥u [ρah · ∇uh], ρah · ∇vh

〉
K
, (99)

S⊥2 (Uh,V h) =
∑
K

α2

〈
P⊥p [∇ · uh],∇ · vh

〉
K
, (100)

S⊥3 (Uh,V h) =
∑
K

α3

〈
P⊥ψ [Rψ],

−∇svh +
λ

2ηp

(
ah · ∇χh + χh · (∇ah)T +∇ah · χh

)〉
K

, (101)

where Rψ is the residual of the constitutive equation

Rψ =−∇suh +
λ

2λ0
(ah · ∇Pψ[E ·ψh]− Pψ[E ·ψh] · ∇ah

−(∇ah)T · Pψ[E ·ψh] + 2∇suh
)
.

Again, the L2 projections onto the FE spaces for the velocity (without
boundary conditions), pressure and stress have respectively been denoted by
Pu, Pp and, as already mentioned, Pψ. In the following results, we will also
use the notation

Pψ[E ·ψh] · ∇ah + (∇ah)T · Pψ[E ·ψh] = ψ̇
∗
h + ψ̇

∗∗
h ,

and

Pψ[E ·ψh] · (∇ah)T +∇ah · Pψ[E ·ψh] = ψ̇
∗
h − ψ̇

∗∗
h ,

where ψ̇
∗
h = Pψ[E · ψh] · ∇sah + ∇sah · Pψ[E · ψh] and ψ̇

∗∗
h = Pψ[E · ψh] ·

∇asah −∇asah · Pψ[E ·ψh]. In these expressions, ∇asah is defined by (92).
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8.2.3 Stability and convergence in a mesh-dependent norm

We first state stability in the form of an inf-sup condition in a mesh depen-
dent norm that depends on the stabilised formulation used, and next we state
convergence using the same norm.

Analogously to assumption H1 defined in Section 8.1.2, we now assume
that the following holds:

Assumption H3 Given ah,vh ∈ Vh, qh ∈ Qh,ψh ∈ Υ h and

zh := ρah · ∇vh +∇qh −
ηp
λ0
∇ · Pψ[E ·ψh],

there holds ‖zh‖ ≤ cm
(
‖Pu,0 [zh]‖+

∥∥P⊥u [zh]
∥∥) ,

for a constant cm > 0.

The norm in which the results will be first presented is

‖V h‖2W = 2ηs ‖∇svh‖2 +
ηp
λ20
‖Pψ[E ·ϕh]‖2

+
∑
K

αu

∥∥∥∥ρah · ∇vh +∇qh −
ηp
λ0
∇ · Pψ[E ·ϕh]

∥∥∥∥2
K

+
∑
K

αu
∥∥P⊥u [ρah · ∇vh]

∥∥2
K

+
∑
K

αu
∥∥P⊥u [∇qh]

∥∥2
K

+
∑
K

αu

∥∥∥∥P⊥u [ ηpλ0∇ · Pψ[E ·ϕh]

]∥∥∥∥2
K

+
∑
K

αp ‖∇ · vh‖2K +
∑
K

αψ

∥∥∥∥ λ

2λ0
(ah · ∇Pψ[E ·ϕh]− ϕ̇∗∗h )

∥∥∥∥2
K

, (102)

considering V h = [vh, qh,ϕh] ∈ X h (note again that ϕh is dimensionless).
This is clearly a norm for the homogeneous velocity boundary conditions con-
sidered, since if ‖V h‖W = 0, vh = 0 because of the first term (using Körn’s
inequality), Pψ[E ·ϕh] = 0 for ηp > 0 because of the second term (and, in fact,
ϕh = 0 because of Assumption H5 stated later), and, finally, qh = 0 because
of the third term and the definition of Q.

Our the main stability result, which implies existence and uniqueness of
discrete solutions supposing that assumptions H2 and H3 hold, and for a λ
small enough compared to the rest of physical parameters, can be stated as
follows: under the hypothesis above, there is a constant C > 0 such that

inf
Uh∈Xh

sup
V h∈Xh

Bstab(Uh,V h)

‖Uh‖W ‖V h‖W
≥ C,

provided the constants ci, i = 1, .., 4 defined in (40)-(42) are large enough.
The interpolation errors εi(v) are defined by (94) . In the case of v = ψ, it

is understood that εi(ψ) := infψh∈Υ h

∑
K ‖E ·ψ −E ·ψh‖Hi(K).
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Our main convergence result (see [98]) is that the error function of the
method is:

E(h) :=
√
η0ε1(u) +

√
η0
∑
K

√
ReKε1,K(u) +

√
η0

λ0
ε0(ψ)

+

√
η0

λ0

∑
K

√
WeKε0,K(ψ) +

1
√
η0
ε0(p), (103)

where ReK and WeK defined in (96) are the element (or cell) Reynolds and
Weissenberg numbers, respectively. More precisely, we proved that

‖U −Uh‖W ≤ CE(h). (104)

At this point, a very important remark is needed. In Section 8.1 it is proved
that the FE method proposed for the standard formulation of the viscoelastic
flow problem is stable and has an error function similar to (103) (See (95)).
However, a a major difference needs to be highlighted: now the term that
accounts for the error of the logarithm of the conformation tensor has a factor
λ−10 in front. This is a very important improvement, as the growth of the
error with the elasticity of the flow will be significantly reduced in the log-
conformation formulation with respect to the standard one.

In the way to prove (104), one has to prove (weak) consistency and that
the interpolation error of the method is also (103). In the prove of the second
result, a technical condition is required, which is worth to point out. It reads:

Assumption H5 For all χh ∈ Υ h if M is a bounded linear operator of χh

and ∇χh, there holds

‖M(χh,∇χh)‖K ≤ C ‖M(Pψ[E · χh],∇Pψ[E · χh])‖K ,
K ∈ Th.

If Ũh is the best FE approximation of U , this assumption allows us to obtain,
for λ small enough, the interpolation estimates

Bstab

(
U − Ũh,V h

)
≤ CE (h) ‖V h‖W ,∥∥∥U − Ũh

∥∥∥
W
≤ CE (h) ,

which are needed to prove (104).

8.2.4 Stability and convergence in a natural norm

The next results aim at proving stability and convergence in a natural norm.
As remarked in Section 8.1.3, since this natural norm does not include any
control on the convective terms, stability and convergence in this norm is
only meaningful in the case of small cell Reynolds and Weissenberg numbers.
In the following, and contrary to what we have been considering up to this
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point, generic constants C may depend on these numbers and explode as they
increase.

We proved that the solution of the discrete problem Uh = [uh, ph,ψh] ∈
X h can be bounded as

√
η0 ‖uh‖H1(Ω) +

√
η0

λ0
‖Pψ[E ·ψh]‖+

1
√
η0
‖ph‖

≤C
(

1
√
η0
‖fu‖H−1(Ω) +

λ0√
η0

∥∥fψ∥∥) .
Moreover, under the assumptions of convergence in the mesh-dependent case
and if the solution of the continuous problem U = [u, p,ψ] ∈ X is regular
enough, the following error estimate holds:

√
η0 ‖u− uh‖H1(Ω) +

√
η0

λ0
‖exp(ψ) ·ψ − Pψ[E ·ψh]‖+

1
√
η0
‖p− ph‖

≤ CE(h).

Finally, we proved a L2 error estimate for the velocity, supposing the same
assumptions of stability for the natural norm and that the continuous problem
satisfies the following elliptic regularity condition

√
η0 ‖u‖H2(Ω) +

√
η0

λ0
‖exp(ψ) ·ψ‖H1(Ω) +

1
√
η0
‖p‖H1(Ω) ≤ C

1
√
η0
‖fu‖ .

Then

√
η0 ‖u− uh‖

≤Ch
(
√
η0 ‖u− uh‖H1(Ω) +

√
η0

λ0
‖E ·ψ − Pψ[E ·ψh]‖+

1
√
η0
‖p− ph‖

)
.

8.3 The time-dependent semi-discrete analysis of the standard viscoelastic
problem

8.3.1 Problem statement and finite element discretisation

The boundary problem considered in this section corresponds to the one de-
scribed in Section 3.1. To equations (1)-(4) we add and initial condition for the
velocity and for the stress, u0 and σ0, respectively, as well as homogeneous
Dirichlet conditions for the velocity (and no boundary conditions for the stress
field). For a complete description of the mathematical structure of the problem
we refer to [85,19].

The weak form of the problem is the one detailed in Section 3.3 for the
standard formulation, in particular in equations (16)-(18).

Finally, the Galerkin FE discretisation is given in (25), and the two com-
patibility conditions that do not allow the use of an arbitrary interpolation
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because the scheme may become unstable are explained in Section 4.3, in-
equalities (26) and (27).

The stabilisation we analysed in [15] is non-residual and is explained in
Section 6.1.2, with the stabilisation parameters (40)-(42) given in Section 6.1.1.

8.3.2 Analysis of the linearised time-dependent case

We start considering the transient linearised problem. In this case, the advec-
tion velocity û in the expressions of the stabilisation parameters needs to be
replaced by the linearisation velocity a that we are using in this section.

The transient linearised problem consists in finding Uh : (0, tf)→ X h such
that

(Dt(Uh),V h) +Bstab (Uh,V h) = 〈f ,vh〉 , (105)

for all V h ∈ X h, where Dt is defined in (5), and Bstab, defined in (88), is the
sum of the bilinear form of the problem and the stabilisation terms:

Bstab (Uh,V h) =B (Uh,V h) + S⊥1 (Uh,V h)

+ S⊥2 (Uh,V h) + S⊥3 (Uh,V h) .

The notation employed here is the one used in the stationary linearised prob-
lem (Section 8.1).

Moreover, assumption H1 detailed in Section 8.1.2 is a condition on the
interpolating spaces to have a well-posed problem that holds in the case of
equal order interpolations.

The following existence and uniqueness result for the solution of (105) was
motivated by the procedure followed in [133] for the two-field Navier-Stokes
problem. Let us consider the following pressure and velocity subspaces:

Q?h =
{
qh ∈ Qh|

(
P⊥u,0 [∇qh] , P⊥u,0 [∇qh]

)
= 0
}
,

Vdiv
h = {vh ∈ Vh| (qh,∇ · vh) = 0, ∀qh ∈ Q?h} .

In addition, Qh\Q?h will stand for the supplementary of Q?h in Qh, i.e., Qh =
(Qh\Q?h)⊕Q?h.

To ensure that Vdiv
h is not trivial, we use the following result: there exists

a constant γ > 0, independent of h, such that

inf
qh∈Q?

h

sup
vh∈Vh

(qh,∇ · vh)

‖vh‖1 ‖qh‖
≥ γ.

Using this, the existence and uniqueness of the semi-discrete problem (105)
can be proved.

On the other hand, a stability estimate can be obtained for a slightly
different linearised formulation, obtained by evaluating all the rotational terms
in the constitutive equation in a previous iteration. Thus, let σ̂h be a given
stress and define g (ah, σ̂h) := σ̂h · ∇ah + (∇ah)

T · σ̂h. The working norm to
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consider is similar to (93) used in Section 8.1.2; in the transient case, we need
to consider:

‖V h‖2W = 2ηs ‖∇svh‖2 +
1

2µ
‖χh‖

2
+ α1

∥∥P⊥u [ρah · ∇vh]
∥∥2

+ α1 ‖ρ∂tvh + ρah · ∇vh +∇qh −∇ · χh‖
2

+ α2 ‖∇ · vh‖2 + α1

∥∥P⊥u [∇qh]
∥∥2 + α1

∥∥P⊥u [∇ · χh]
∥∥2

+ α3

∥∥∥∥ λ

2ηp
∂tχh −∇svh +

λ

2ηp
ah · ∇χh

∥∥∥∥2 .
The next result states the stability of the proposed semi-discrete linearised
formulation: for almost all t ∈ (0, tf) there holds

ρ

2
‖uh (t)‖2 +

λ

4ηp
‖σh (t)‖2 +

ˆ t

0

‖[uh, ph,σh]‖2W dt

.
c2K
2ηp

ˆ t

0

‖f‖2H−1 dt+
λ2

2ηp

ˆ t

0

‖g (ah, σ̂h)‖2 dt+
ρ

2
‖u0‖2 +

λ

4ηp
‖σ0‖2 .

8.3.3 Analysis of the non-linear problem

We finally consider the nonlinear problem (55), discretised in space using the
stabilised FE we propose and still continuous in time. Using the same pro-
cedure as that proposed in [96], the existence of a solution under suitable
conditions can be proved. The result stated in this section yields existence
of a semi-discrete solution, as well as stability and convergence. As usual in
the case of the fully nonlinear Navier-Stokes equations, due to the hypotheses
needed in the proof of this result, the norm in which it is presented is weaker
than the norm used in the linearised problem; this is proved in [15].

In essence, we will have L∞(0, tf)-control for both the L2(Ω)-norm of ve-
locity and stresses and L2(0, tf)-control for the H1(Ω)-norm of the velocity.
The pressure, on the other hand, is controlled only in a norm involving the
stabilisation term, and not the natural L2(Ω)-norm.

The precise assumptions required on the continuous solution are the fol-
lowing:

Assumption H6 System (7) has a solution [u, p,σ] continuous in time and
satisfying

sup
0≤t≤tf

‖u‖∞ ≤ D1, sup
0≤t≤tf

‖∇u‖∞ ≤ D2, sup
0≤t≤tf

‖u‖k+1 ≤ D3,

sup
0≤t≤tf

‖σ‖∞ ≤ D4, sup
0≤t≤tf

‖∇σ‖∞ ≤ D5, sup
0≤t≤tf

‖σ‖k+1 ≤ D6,

sup
0≤t≤tf

‖p‖k ≤ D7, sup
0≤t≤tf

‖∂tu‖k ≤ D8, sup
0≤t≤tf

‖∂tσ‖k ≤ D9,

for certain positive constants Di i = 1, ..., 9 which are supposed to be small
enough. In these inequalities, k is the order of the FE interpolation, assumed
to be the same for all the unknowns.
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For the time-discrete problem, if δt is the time step size, one usually needs
a condition of the form δt ≥ Cα1 for a positive constant C, which is encoun-
tered in most stabilised FE methods; see [134,109] and references therein for a
description of the problem and a way to avoid this restriction. However, in the
time continuous case, the boundedness in time of ‖p‖k and the assumption that
tf is large enough allows us to prove convergence. We do not pretend however
to consider the long-term behaviour of the solution, which would require the
modification of the stabilised formulation.

In order to write all estimates in dimensionless form, let Ld be a character-
istic length of the problem and td a characteristic time scale. These parameters
may explode with the viscosity, and therefore the following estimate is useless
for high Reynolds numbers.

Assume that k ≥ d/2 and that αu is constant (for example computed with
zero velocity). Suppose also that Assumption H6 holds, that tf is sufficiently
large and that the L2(0, tf ; (H−1(Ω))d)-norm of f is bounded. Then, if the
viscosity is sufficiently large, there exists a solution to (51) satisfying

sup
0≤t≤tf

‖u− uh‖2 +
1

td

ˆ tf

0

(Ld ‖∇ (u− uh)‖)2 dt ≤u2?h2k,

sup
0≤t≤T

‖σ − σh‖2 ≤σ2
?h

2k,

ˆ tf

0

αu ‖∇ (p− ph)‖2 dt ≤ p2?h2k,

where u∗, p∗ and σ∗ are appropriate dimensional factors that render the esti-
mates dimensionally consistent. Up to the assumptions required, this estimate
is optimal.

9 Conclusions and outlook

In this paper, we have described the stabilised FE formulation we have de-
veloped over the years to approximate the incompressible flow of viscoelastic
fluids, both using the standard and the logarithmic versions of the problem.
For the former approach, the final formulation we favour is given by (55),
together with the introduction of interelement boundary and shock-capturing
terms and the dynamic approximation of the sub-grid scales.

This formulation satisfies all the requirements that one may a priori pose
to a stabilised FE formulation: it allows one to use arbitrary interpolations for
all variables and it provides stability (and convergence) in highly convective
flows. Moreover, it has proven to be very robust in the examples of application,
both in 2D and in 3D; the success in this respect is due in a significant deal
to the non-residual-based structure of the formulation and the introduction of
dynamic sub-grid scales, particularly when the time step is small. The use of
discontinuity-capturing techniques has also been crucial in some applications.

Concerning the design of the formulation, it is obviously possible to in-
troduce improvements, but we believe it is pretty complete. As in all flow
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problems, one of these improvements could be the design of new discontinuity-
capturing techniques. The approaches available so far, one of which we have
followed, are not as fundamental in nature as the design of the stabilisation
terms, and more basic concepts to design them would be welcome. Other im-
provements could go in the direction of obtaining better approximations to
the sub-grid scales, in particular of the stabilisation parameters, but we do
not expect significant changes in the numerical behaviour of the formulation.

There is room for improvement in the design of time integration schemes,
either based on finite differences or in FE. Computational efficiency is a major
target, and has to be considered in the design of these schemes. In particular,
fractional step schemes will be surely essential in the applications. FE methods
in time, not touched in this paper, may also become important, due to their
flexibility and possibility to use adaptivity.

Adaptivity, both in space and time, is an extremely important topic in
computational mechanics, and also in the approximation of viscoelastic flows.
Mesh refinement techniques need to be based on a posteriori error estimates,
and these have to be proposed for the type of methods we have described.
In particular, sub-grid scales may be used to design such a posteriori error
estimates.

Another issue that we have not touched and that is extremely important
in the approximation of viscoelastic flows is the design of iterative schemes.
Even when the solution is stable at the continuous level, it is very hard to
converge in many applications, particularly at high Reynolds and Weissenberg
numbers. All the machinery used in nonlinear problems (continuation, relax-
ation, tangent operators of some terms) need to be adapted to the problem at
hand.

The analysis of the formulation we have presented has still some gaps that
need to be filled. Stability and convergence estimates robust in terms of the
Reynolds and Weissenberg numbers for the fully nonlinear problem will require
time, as they are still not available for Newtonian flows (with zero Weissenberg
number). However, issues such as the long time behaviour, stability in stronger
norms, fully discrete schemes or different constitutive laws could be analysed.

Obviously, all the emerging techniques in computational fluid mechanics
can also be applied to the numerical simulation of viscoelastic fluids in com-
bination with the FE formulation proposed, such as reduced order models,
machine learning tools or optimisation strategies. This last point is particu-
larly relevant to applications, which are too numerous to list. In particular,
a promising field of application of viscoelastic flows is that related to the
exploitation of elastic turbulence; understanding the mechanisms of drag re-
duction or the turbulent energy cascade is a topic which can benefit from a
numerical tool as the one we have reviewed in this paper.
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