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Abstract

The effect of temperature in viscoelastic fluid flows is studied applying a stabilized
finite element formulation based on both a standard and a log-conformation reformula-
tion (LCR), and the Variational Multiscale (VMS) method as stabilization technique.
The log-conformation reformulation turns out to be crucial to solve the cases with a
high Weissenberg number. Regarding temperature coupling, a two-way coupling strat-
egy is employed: on the one hand, the dependence of viscoelastic fluid parameters on
temperature is established, together with the addition of a new term to the energy
equation which takes into account the stress work. The formulations and the iterative
algorithms are validated in the well-known flow past a cylinder benchmark. Besides,
the extension 1:3 case is studied, in which several scenarios are explored varying the
values of the main dimensionless numbers that characterize the problem to see how
the flow pattern and temperature distribution change along the channel.

Keywords: non-isothermal fluid flow, viscoelasticity, log-conformation reformulation,
thermal coupling, variational sub-grid scales

1 Introduction

The production process of polymers is mostly non-isothermal in nature. Flow properties
are strongly dependent both on rheology and temperature, therefore there is a high interest
to understand and make predictions of such type of flows. The combination of high
viscosities of polymeric melts and high deformation rates results in the transformation
of large amounts of mechanical energy into heat, and consequently in a rising of the
material temperature. This phenomenon is used in extruders where viscous dissipation is
employed to enhance the melting of the materials. Melt polymer flows in the industry are
characterized by very low Reynolds numbers and high Prandtl numbers, thus leading to
fast hydrodynamic flow development but rather slow thermal development. As remarked
in [1], the non-isothermal nonlinear flow is also particularly relevant in many applications,
since it is the basis of many complex flow problems with viscoelastic and multiphase fluids.
Airflow inside a combustion engine, polymer flow in injection molding, or fluid flow in heat
exchange problems, are only a few examples of viscous fluids where the temperature is an
important unknown.

Concerning viscoelastic materials, stresses now play an important role on the tempera-
ture and temperature history and not only on the deformation (and deformation history).
Consequently, the temperature should be an independent variable in the constitutive equa-
tions for the stress tensor, as Peters & Baaijens [2] explain in their work. Moreover, the
temperature dependence of the linear viscoelastic properties (such as the relaxation time
λ) is described by the principle of time-temperature superposition. This principle states
that all characteristic times of the material depend on temperature similarly and therefore
this relation can be described through a function of the temperature. In literature, we have
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found two main models [3]: the Williams-Landel-Ferry (WLF) function [4] which is widely
employed or the Arrhenius relationship [5] (see [6] for a discussion between these two
methods). Also, the time-temperature superposition principle holds for rheological prop-
erties at different constant temperatures, however, it does not describe the consequences
of temperature changes in time and space. As it is explained in [2], another difficulty
for solving non-isothermal viscoelastic flows comes from the energy equation. Usually, it
is assumed that the internal energy of fluids is a function of the temperature uniquely,
however, this is not a proper assumption for viscoelastic fluids.

Besides, the energy equation needs to be reconsidered to specify which part of the
mechanical power is dissipated and which part is accumulated as elastic energy. One needs
to take into account that the deformation of elastic materials is a reversible process since
mechanical energy can be stored and released as mechanical energy again. Nevertheless, for
purely viscous materials, the deformation is irreversible, due to mechanical energy being
completely dissipated. On the contrary, for viscoelastic materials, mechanical energy will
be partially stored as elastic energy and partly dissipated. This is taken into account
by the stress work in the energy equation, which is computed as the product between
stresses and the velocity gradient. For Newtonian fluids it is called viscous dissipation, as
it is always positive. For viscoelastic fluids we will call it also viscous dissipation if it is
positive and this property is exploited.

In literature different works can be found which study the forced convection in pipes
and channels using diverse techniques, as [7, 8, 2], and more recent papers as [9] which
simulate a 3D viscoelastic flow in a rectangular duct, or [10], where the application to
axisymmetric 4:1 contraction flows is developed for non-isothermal flows. Also, the recir-
culation and thermal regions of viscoelastic flow in the symmetric planar problem for dif-
ferent expansion angles is studied in [11]. Moreover, the optimal control of non-isothermal
viscoelastic fluids to minimize vortices and controlling the heat flux is investigated in [12]
using finite differences, and also in [13], although in this case using a Newtonian flow but
employing the finite element (FE) method. More recently, we found the work [14], where
a 3D transient non-isothermal simulation is performed to predict the extrudate shape of
viscoelastic fluids emerging from an asymmetric keyhole shaped die.

Regarding free convection examples, numerical experiments can be found in the lit-
erature that include these effects, apart from considering the contribution of the stress
work into the energy equation, such as Peres et al. [15]. This work explores the significant
enhancement of the convection coefficient with respect to the corresponding Newtonian
fluid flow, demonstrated experimentally by Hartnett and Kostic [16]. In this case, the
variation of the fluid density with temperature is dealt with in a classical way, employing
the well-known Boussinesq approximation. Following similar assumptions, in [17], heat
transfer is studied in a heated square cavity under the effect of thermal radiation, and [1],
where the MIT benchmark 2001 [18] is carried out.

One of the main issues of such simulations, besides robustness and efficiency, is the
reliability of the numerical solution. The price to be paid for enhancing the accuracy and
robustness properties of such fully coupled approaches is the more expensive solution of
the resulting coupled nonlinear discrete schemes.

In this work, we employ two different models to define the constitutive models, both
rather similar between them. On the one hand, the Phan-Thien-Tanner (PTT) [19, 20]
which is widely employed in non-isothermal fluid flows. The Oldroyd-B model is also used
in this work. Also, apart from the standard viscoelastic fluid flow equations, the coupled
problem is considered using the log-conformation formulation introduced first by Fattal
and Kupferman in [21, 22], and applied to a FE framework using sub grid-scales in [23]. In
the literature, [24] employs the log-conformation reformulation coupled with temperature
to study the heat transfer enhancement by elastic turbulence in a curvy channel. Also in
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[1], the thermal coupling is studied employing the log-conformation reformulation using
the FE method.

The Variational Multi-scale Method has been employed to stabilize both, viscoelastic
fluid flow and temperature problems. This stabilized formulation has its beginnings in
the methods introduced by Hughes et al. [25] for the scalar convection-diffusion-reaction
problem and later extended to the Navier-Stokes problem in [26, 27, 28], where the space
of the sub-grid scales was taken as orthogonal to the FE space. This idea was adapted
to the three-field Navier-Stokes problem in [29] and later to the viscoelastic flow problem
in [30].

Concerning the algorithm employed, it is iterative and non-monolithic, executed in a
partitioned manner. This means that in each iteration (or each time-step in the case of a
time-dependent simulation) both parameters dependent of temperature in the constitutive
and momentum equation and the stress work term in the energy equation are updated.

The purpose of this work is to study numerically the effect of the temperature in the
viscoelastic fluid flow in two different examples using both the standard and logarithmic
reformulation and a term-by-term stabilization scheme. The first example is done to
validate the model in the flow past a cylinder. The second one is the 1:3 expansion, an
interesting case in which the stationary solution could be asymmetric while the domain
is symmetric when the Reynolds number is high enough. In the case of the patterns of
viscoelastic fluids other instabilities can be activated because of the elastic component
of the fluid, even in flows with low Reynolds number, resulting in a chaotic flow called
elastic turbulence [31, 32, 33]. In particular, in [34], the effect in a square-square three-
dimensional contraction is studied, obtaining asymmetric flows in a symmetric problem
when elasticity grows. Also, in [35] the instabilities and the symmetry of the flow in a
symmetric domain are analyzed for flows with high elasticity.

This paper is structured as follows. In Section 2 we present the initial and boundary
problem statement, the variational form adopted, the Galerkin FE approximation, and the
time discretization. Section 4 details the stabilized formulation employed for the thermal
coupling. Finally, in Section 5 we present the benchmarks computed to validate the code
and to explore the effect of temperature in viscoelastic fluid flows. Finally, the conclusions
are summarized in Section 6.

2 Thermally coupled viscoelastic fluid flows

In this section, the equations that involve the coupled problem are presented, taking into
account the proper modifications for both the viscoelastic fluid flow problem and the
temperature problem.

2.1 Initial and boundary value problem

First of all we present briefly the standard equations that describe the viscoelastic fluid flow
problem considering that now the different fluid parameters such as relaxation time λ and
the total viscosity η0 have a dependency with the temperature unknown. We consider the
fluid moving in a domain denoted by Ω ⊂ Rd, taking d = 2 or 3 depending on whether the
problem is two or three dimensional. The flow takes place during the time interval [0, T ].
The momentum, continuity, constitutive and energy equations are written as follows:

ρ
∂u

∂t
+ ρu · ∇u−∇ · (2ηs(ϑ)∇su)−∇ · σ +∇p = f in Ω, t ∈]0, T [, (1)

∇ · u = 0 in Ω, t ∈]0, T [, (2)

1

2ηp(ϑ)
(I + h(σ)) · σ −∇su+

λ(ϑ0)

2ηp(ϑ0)

(
∂σ

∂t
+ u · ∇σ

)
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− λ(ϑ0)

2ηp(ϑ0)

(
σ · ∇u+ (∇u)T · σ

)
= 0, in Ω, t ∈]0, T [, (3)

ρCp

(
∂ϑ

∂t
+ u · ∇ϑ

)
− k∆ϑ− σ : ∇su = 0, in Ω, t ∈]0, T [, (4)

where ρ denotes the constant density, p : Ω×]0, T [→ R is the pressure field, u : Ω×]0, T [→
Rd is the velocity field, ϑ : Ω×]0, T [→ R is the temperature field, σ : Ω×]0, T [→ Rd⊗Rd is
the viscoelastic or elastic stress tensor, f : Ω×]0, T [→ Rd is the force field. Note that the
third and fourth terms in the left-hand-side of equation (1) correspond to the divergence of
the deviatoric extra stress tensor, T : Ω×]0, T [→ Rd ⊗Rd, defined in terms of the viscous
and the viscoelastic contribution as T = 2ηs∇su+ σ.

In the energy equation (4), Cp denotes the specific heat and k is the thermal conduc-
tivity, considered constant.

With reference to the constitutive equation (3), ηs represents the effective viscosity
(or solvent viscosity), ∇su is the symmetrical part of the velocity gradient and λ is the
relaxation time and ηp represents the polymeric viscosity. Note that ηp, ηs and λ are
allowed to depend on the temperature ϑ, although λ and ηp must scale in the same way
with respect to it and therefore its quotient can be evaluated with a reference temperature
ϑ0 (see below). Each term of equation (3) has a particular meaning: ∇su is the source,
λ
2ηp
u · ∇σ represents the convective term and λ

2ηp

(
σ · ∇u+ (∇uT ) · σ

)
are the rotational

terms. Note that from this point on we will write the polymeric and the effective viscosity
as a function of the total viscosity η0. For that, an additional parameter β ∈ [0, 1] is
introduced, so that ηs = βη0 and ηp = (1 − β)η0. Finally, h(σ) is a tensor that adopts
different expressions depending on the constitutive equation considered. In the case of the
Oldroyd-B model, tensor h(σ) is taken as a null tensor; however for the Giesekus model
[36] this tensor is equal to ελ

ηp
σ, where ε is the constant called mobility factor, and is related

to the elongational behavior of the fluids and considered to be positive. Similarly, for the
Phan-Thien-Tanner (PTT) model [19, 20] the tensor adopts the form ελ

ηp
tr (σ) I, where

tr(σ) is the trace of the stress tensor. Note that when ε = 0 the two models reduce to
the Oldroyd-B rheological model. Also, we have to remark that, in the Giesekus and PTT
models, another non-linearity is considered in the constitutive equation, defined by the
product h(σ) ·σ. This term enables a simple qualitative description of several well-known
properties of viscoelastic fluids, namely, shear-thinning, the non-zero second normal stress
coefficient and the stress overshoot in transient shear flows [37]. The PTT model is one
of the most used approaches in the literature when non-isothermal viscoelastic fluid flow
problems are addressed, and we will also consider it for some numerical computations.
In [12], it is argued that the motivation of using the linearized PTT mode instead of
the Oldroyd-B model is that it avoids some shortcomings when the Weissenberg number
increases, due to the non-linear term discussed and a positive parameter related to the
elongational behavior of the fluid which tends to lower the stresses resulting from the
computations.

As it was explained in the introduction, the temperature dependence of the viscoelastic
properties is defined by the principle of time-temperature superposition, in which that
dependence is established through temperature functions. There are different functions
to define accurately this relation, although the most used ones are those presented next.
The first one is the Williams-Landel-Ferry (WLF) function [4], defined as follows:

gwlf(ϑ) = exp

[
− ca(ϑ− ϑ0)
cb + (ϑ− ϑ0)

]
where ϑ0 is the reference temperature and ca and cb are constants. Typical extreme
sets of WLF parameters (ca, cb) are (5, 150) for temperatures relatively far from the
glass transition temperature ϑg, leading to thermorheological coupling, and (15, 50) for
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Figure 1: Comparison between different models for the temperature dependence for the
viscoelastic fluid flow parameters considering ϑ0 = 462 K.

temperatures relatively close to ϑg. The second one employed in this work is the Arrhenius
function, it is given by

ga(ϑ) = exp

[
cr

(
1

ϑ
− 1

ϑ0

)]
where in this case cr is a constant parameter and ϑ0 is the reference temperature given
in Kelvin. The constant cr is considered 1720 K, as done in [38, 11]. In Figure 1 the
two extreme set of parameters for the Williams-Landel-Ferry function, and the Arrhenius
function considering cr = 1720 K have been plot. In both functions, the temperature of
reference has been fixed to 462 K to compare the shape of the curves. Note that for the
WLF function, if ϑ0 is near the glass transition temperature; viscosity and relaxation time
vary significantly with ϑ, as it can be observed in the plots. As it was advanced in the
introduction, in the work of Lomellini [6], an extensive discussion is presented about which
of the two methods (WLF or Arrhenius) is more accurate, the conclusion being that the
WLF approach is quite general as it applies to a lot of materials as polymer melt solutions
and organic and inorganic glass-forming liquids when the temperature approaches the
glass transition. However, an Arrhenius behavior is reported to better fit polyolefins and
polycaprolactam liquids. To sum up, the conclusion is that the WLF model is the best
representation of the data over the whole temperature range. Finally, the relation between
temperature and viscoelastic properties is established as follows:

λ(ϑ) = λ(ϑ0)g(ϑ)

η0(ϑ) = η0(ϑ0)g(ϑ)

where g is the shift factor that will be equal to gwlf or ga depending on the considered
model, and λ(ϑ0) and η0(ϑ0) are known values for the reference temperature ϑ0. Note

that considering the previous expressions, in equation (3) the quotient λ(ϑ)
η0(ϑ)

is a constant.

Therefore, from this point we define Λ(ϑ0) as Λ(ϑ0) = λ(ϑ0)
η0(ϑ0)

.
In the case of taking into account free convection, the Boussinesq approximation will

be considered, adding a body force term in the momentum equation (1):

γg(ϑ− ϑ0)

where γ is the thermal expansion coefficient and g is the gravity acceleration vector.
Now, a remark about the modification in the energy equation (4) must be done. Fol-

lowing the work of Peters and Baaijens [2] two additional terms are considered in the
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energy equations when the PTT model is considered as the constitutive equation. The
energy balance equation is in this case as follows:

ρCp

(
∂ϑ

∂t
+ u · ∇ϑ

)
− k∆ϑ = ασ : ∇su+ (1− α)

tr(σ)

2λ̄
, in Ω, t ∈]0, T [

where α is a constant, and λ̄ = λ

(
1 +

λεtr(σ)

ηp

)−1
. Note that the two last terms on the

right-hand side have been added to the classical energy equation, although for the case
α = 1 the standard expression would be recovered. The first term is the contribution of
the entropy elasticity and the second expresses the contribution of the energy elasticity.
In [2] it is argued that there are two extreme cases: α = 1 that corresponds with the case
of pure entropy elasticity and α = 0 that is the case of pure energy elasticity. In the same
work, the authors demonstrate that the effect of the parameter α is very small because
with a fully-developed shear flow there will be no internal energy storage, and only stress
work matters. Therefore, as it remarked in [15] the two α terms will cancel up and the
final result will be mathematically equivalent to setting α = 1, which is also argued in
other works [39, 40]. Following the same arguments, in this work we will suppose that the
parameter α is 1 in all cases. Therefore, the considered energy equation is (4). The heat
source term is thus the classical one, i.e. the product between stresses and the symmetric
gradient of velocities and represents the internal heat produced by internal work.

Therefore the differential equations of the initial and boundary value problem for the
standard formulation are (1)-(4).

From this point, in order to distinguish operators between standard and log-conformation
reformulations, we will employ the subscripts “std” and “log”, respectively. Let us define
U = [u, p,σ, ϑ], F std = [f , 0,0, 0],

Lstd(Û ;U) :=


−∇ · σ −∇ · (2ηs(ϑ̂)∇su) + ρû · ∇u+∇p

∇ · u
1

2ηp(ϑ̂)
(I + h(σ̂)) · σ −∇su+ Λ(ϑ0) (gstd(û,σ))

ρCpû · ∇ϑ− k∆ϑ− σ̂ : ∇sû

 (5)

and

Dstd

(
ϑ̂;U

)
:=



ρ
∂u

∂t
0

λ(ϑ̂)

2η0(ϑ̂)

∂σ

∂t

ρCp
∂ϑ

∂t


,

where gstd(û,σ) = û · ∇σ − σ · ∇û − (∇û)T · σ are the convective and the rotational
terms. Equations (1), (2) and (3) can be rewritten, considering Dt = Dstd, L = Lstd and
F = F std, as:

Dt(ϑ;U) + L(U ;U) = F . (6)

These equations need to be completed with initial and boundary conditions to close the
problem. For simplicity, we suppose the boundary condition for the velocity u = 0 on ∂Ω
for all time. Elastic stress conditions do not need to be prescribed. Finally, similarly to
the velocity, we suppose ϑ = 0 on ∂Ω, in other words, we assume homogeneous Dirichlet
boundary conditions for both velocity and temperature. This will allow us to simplify the
writing, for example because unknowns and test functions of the variational form of the
problem will belong to the same space. However, in the numerical examples we shall use
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non-homogeneous boundary conditions that can be implemented as usual by shifting the
unknowns with the boundary-value functions.

Regarding the initial conditions, we will set velocity, stresses and temperature to u =
u0, σ = σ0 and ϑ = ϑ0 at time t = 0 where u0, σ0 and ϑ0 are functions defined on the
whole domain Ω.

Now, we will define the set of equations in strong form for the log-conformation re-
formulation (see [23] for more details), taking into account the modifications considered
above regarding the viscoelastic parameters and the additional term for the energy equa-
tion. The reformulation is derived basically from a change of variables, where the stress

tensor is replaced by σ =
ηp
λ0

(τ − I), and in turn, the conformation tensor τ is written

as τ = exp(ψ) in (1), (2) and (3). Particularly, λ0 is linearly dependent with λ and is
defined as λ0 = max {kλ, λ0,min}, being k a constant and λ0,min a given threshold. As
it is detailed in [23], in the numerical experiments we have found useful to take k small,
so that λ0 < λ; this has allowed us to obtain converged solutions that we have not been
able to get for k = 1. Clearly, for k ≤ 1 we can ensure that the conformation tensor is
always symmetric and positive. In the case of thermal coupling, λ0 also depends on the
temperature through the dependence with λ. Therefore, the strong form of the problem
consists in finding u, p, ψ, ϑ solving the next set of equations over the domain Ω and in
the interval [0, T ]:

ρ
∂u

∂t
−∇ · ηp(ϑ)

λ0(ϑ)
exp(ψ)−∇ · 2ηs(ϑ)∇su+ ρu · ∇u+∇p = f , (7)

∇ · u = 0, (8)

1

2λ0(ϑ)
(exp(ψ)− I) · (h(exp(ψ)) + I)−∇su+

λ(ϑ)

2λ0(ϑ)

(∂ exp(ψ)

∂t

+u · ∇ exp (ψ)− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su
)

= 0, (9)

ρCp

(
∂ϑ

∂t
+ u · ∇ϑ

)
− k∆ϑ−

(
ηp(ϑ)

λ0(ϑ)
exp(ψ)− I

)
: ∇su = 0. (10)

Considering again the expressions of viscoelastic parameters, we can define Υ1(ϑ0) =
λ(ϑ0)

2λ0(ϑ0)
and Υ2(ϑ0) =

ηp(ϑ0)
λ0(ϑ0)

. Analogously to what was done for the standard formulation,

calling U = [u, p,ψ, ϑ] and F log = [f , 0,0, 0], the differential equation of the problem can
be written as Dlog(ϑ;U) + Llog(U ;U) = F log, where

Llog(Û ;U) :=


−∇ ·Υ1(ϑ0) exp(ψ)−∇ · 2ηs(ϑ̂)∇su+ ρû · ∇u+∇p

∇ · u
1

2λ0(ϑ̂)

(
exp(ψ̂)− I

)
· (h(exp(ψ)) + I)−∇su+ Υ2(ϑ0)glog(û;u,ψ)

ρCp (û · ∇ϑ)− k∆ϑ−
(

Υ1(ϑ0) exp(ψ̂)− I
)

: ∇sû


(11)

and

Dlog(U) :=


ρ
∂u

∂t
0

Υ1(ϑ0)
∂ exp(ψ)

∂t

ρCp
∂ϑ

∂t

 ,

where glog(û;u,ψ) = û · ∇ (exp(ψ)) − exp(ψ) · ∇û − (∇û)T · exp(ψ) + 2∇su are the
convective and rotational terms.
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In this case the boundary and initial conditions are similar to the ones described
above, but now instead of σ we have the dimensionless tensor ψ, which will adopt the
value ψ = ψ0 at time t = 0.

2.2 Variational form

Let us introduce some specific notation in order to define the weak form of the viscoelastic
problem: L2(ω) is the space of square integrable functions in a domain ω while Hm(ω)
is the space of functions whose distributional derivatives of order up to m ≥ 0 (integer)
belong to L2(ω). The norm in a space X is denoted by ‖·‖X , except in the case X = L2(Ω),
where the subscript is omitted. The space H1

0 (ω) comprises functions in H1(ω) vanishing
on ∂ω and H−1(Ω) is the topological dual of H1

0 (Ω), the duality pairing being 〈·, ·〉. Finally,
the L2 inner product in ω (for scalars, vectors and tensors) is denoted by (·, ·)ω and the
integral over ω of the product of two general functions is written as 〈·, ·〉ω (the subscript
being omitted when ω = Ω).

Using this notation, velocity, pressure and stress FE spaces for the continuous problem
are: V 0 = H1

0 (Ω)d for the velocity, Q = L2(Ω)/R for the pressure, Υ = H1(Ω)d×dsym for the
stresses in the standard formulation (the subscript standing for symmetric tensors), and
for the temperature T = H1

0 (Ω) for each fixed time t. Therefore, the weak form of the
coupled for the standard formulation problem consists in finding U = [u, p,σ, ϑ] :]0, T [−→
X := V 0 ×Q×Υ× T , such that the initial conditions are satisfied and:(

ρ
∂u

∂t
,v

)
+ (σ,∇sv) + 2(ηs(ϑ)∇su,∇sv) + 〈ρu · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉,

(q,∇ · u) = 0,(
1

2ηp(ϑ)
(I + h(σ)) · σ,χ

)
− (∇su,χ) + Λ(ϑ0)

(
∂σ

∂t
+ u · ∇σ,χ

)
−Λ(ϑ0)

(
σ · ∇u+ (∇u)T · σ,χ

)
= 0,

ρCp

(
∂ϑ

∂t
+ u · ∇ϑ, ξ

)
+ (k∇ϑ,∇ξ)− (σ : ∇su, ξ) = 0,

for all V = [v, q,χ, ξ] ∈ X . In compact form, the problem can be written as:

Gstd(U ,V ) +Bstd(U ;U ,V ) = Lstd(V ), (12)

for all V ∈ X , where

Gstd(U ,V ) =

(
ρ
∂u

∂t
,v

)
+ Λ(ϑ0)

(
∂σ

∂t
,χ

)
+ ρCp

(
∂ϑ

∂t
, ξ

)
, (13)

Bstd(Û ;U ,V ) =2(ηs(ϑ̂)∇su,∇sv) + 〈ρû · ∇u,v〉+ (σ,∇sv)

− (p,∇ · v) + (q,∇ · u) +

(
1

2ηp(ϑ̂)
(I + h(σ̂)) · σ,χ

)
− (∇su,χ) + Λ(ϑ0)

(
û · ∇σ − σ · ∇û− (∇û)T · σ,χ

)
+ ρCp (û · ∇ϑ, ξ) + (k∇ϑ,∇ξ)− (σ̂ : ∇sû, ξ) , (14)

Lstd(V ) = 〈f ,v〉. (15)

Analogously, considering now the logarithmic reformulation of the viscoelastic flow
problem, the spaces for the velocity, pressure and temperature for the continuous problems
are the ones defined above for the standard formulation. However, now the space for tensor
ψ is denoted by Ῡ for each fixed time t, where an appropriate regularity is assumed (see
[23]). So, in this case the weak form of the problem consists in finding U = [u, p,ψ, ϑ] :
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]0, T [−→ X̄ := V 0 ×Q× Ῡ× T , such that the initial conditions are satisfied and for all
V = [v, q,χ, ξ] ∈ X ,

Glog(ϑ;U ,V ) +Blog(U ;U ,V ) = Llog(ϑ;V ), (16)

where each term is defined as

Glog(ϑ̂;U ,V ) =

(
ρ
∂u

∂t
,v

)
+

(
Υ1(ϑ0)

∂ exp(ψ)

∂t
,χ

)
+ ρCp

(
∂ϑ

∂t
, ξ

)
, (17)

Blog(Û ;U ,V ) = (Υ2(ϑ0) exp(ψ),∇sv) + 2(ηs(ϑ̂)∇su,∇sv) + 〈ρû · ∇u,v〉

− (p,∇ · v) + (∇ · u, q) +

(
1

2λ0(ϑ̂)
(exp(ψ − I)) ·

(
h(exp(ψ̂)) + I

)
,χ

)
− (∇su,χ) + (Υ1(ϑ0) (û · ∇ exp(ψ)− exp(ψ) · ∇û) ,χ)

−
(
Υ1(ϑ0)

(
(∇û)T · exp(ψ)− 2∇su

)
,χ
)

+ ρCp (û · ∇ϑ, ξ) + (k∇ϑ,∇ξ)−
(

Υ2(ϑ0)
(

exp(ψ̂)− I : ∇sû
)
, ξ
)
, (18)

Llog(ϑ̂;V ) = 〈f ,v〉. (19)

Note that the space of the test functions is the same as for the standard formulation, i.e.,
the change of variables is made for the stress unknown, but not for the stress test function.

For the coupled problem, we have to consider several dimensionless numbers to char-
acterize the problem. On the one hand, we have the Reynolds number, which comes from
the Navier-Stokes equations and relates inertial and viscous forces. Secondly, we have the
Weissenberg number, a dimensionless number essential to characterize viscoelastic fluid
flow problems. This, as it was already defined, indicates the relevance of the elastic terms
of the constitutive equation, and compares elastic forces with viscous forces. Regarding the
dimensionless number associated with the energy equation, we have selected the Prandtl
number, which relates transport with thermal diffusivity. Finally, we need a global di-
mensionless number able to describe how strong is the coupling between the fluid flow
and the temperature model. With this finality, we consider the Brinkman number, which
compares the inertial power with the heat conduction. Therefore we have a total of four
dimensionless number to define each coupled problem:

Reynolds number: Re =
ρLU

η0
, Prandtl number: Pr =

η0Cp
kf

,

Weissenberg number: We =
λU

L
, Brinkman number: Br =

η0U
2

kf (ϑw − ϑi)
,

where L is the characteristic length, U the characteristic velocity of the problem, ϑw is the
temperature on a reference wall and ϑi is the temperature at the inflow. The remaining
parameters that appear in the previous expressions are properties that correspond to the
viscoelastic fluid flow problem or the temperature problem, and which are explained in
the previous sections.

3 Galerkin finite element discretization and time discretiza-
tion

Once the variational problems for both formulations (12) and (16) have been defined, the
Galerkin approximation can be established. The FE partition of the domain Ω is denoted
by Ph = {K}. Likewise, the diameter of an element K ∈ Ph is denoted by hK and the
diameter of the partition is defined as h = max{hK |K ∈ Ph}.
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So, for the standard formulation, from Ph we may construct conforming FE spaces
for the velocity, the pressure, the elastic stress and the temperature, Vh ⊂ V , Qh ⊂ Q,
Υh ⊂ Υ and Th ⊂ T , respectively. Calling X h := Vh ×Qh ×Υh × Th, the Galerkin FE
approximation of the problem consists in finding Uh :]0, T [−→ X h, such that:

Gstd(ϑh;Uh,V h) +Bstd(Uh;Uh,V h) = Lstd(V h),

for all V h = [vh, qh,χh, ξh] ∈ X h, and satisfying the appropriate initial conditions.
Now, for the logarithmic conformation reformulation, from Th we construct the FE

space for the new variable ψ, Ῡh ⊂ Ῡ. X̄ h := Vh × Qh × Ῡh × Th is the Galerkin FE
space now, and the Galerkin approximation consists in finding Uh :]0, T [−→ X̄ h, such
that

Glog(ϑh;Uh,V h) +Blog(Uh;Uh,V h) = Llog(ϑh;V h),

for all V h = [vh, qh,χh, ξh] ∈ X h. We have to remark that the Galerkin approximation is
not enough to obtain a stable formulation unless convective terms are not relevant and the
appropriate compatibility conditions on the FE spaces hold. Therefore, the next section
presents a stable formulation.

Regarding the time discretization in this paper the backward differencing (BDF)
scheme is considered, in particular BDF1. The first order scheme is not the best discretiza-
tion to capture time-dependent responses. However, the numerical examples presented in
this paper have a steady-state solution, and therefore a BDF1 scheme with a uniform
partition of size δt will be suitable in these cases. The time step level will be denoted with
a superscript.

Moreover, for the log-conformation reformulation we need to obtain the linearized
expression for the time derivative of the exponential as follows (see [23]):

∂ exp(ψ)

∂t

∣∣∣∣
tn+1

=
1

δt

[
exp(ψ̂

n+1
) ·ψn+1 + exp(ψ̂

n+1
)− exp(ψ̂

n+1
) · ψ̂n+1

− exp(ψn)
]

+O (δt) +O
((
δψn+1

)2)
,

where ψ̂
n+1

stands for a previous guess of ψn+1 that depends on the linearization scheme

and δψn+1 = ψn+1 − ψ̂n+1
.

4 Stabilized finite element formulation

In this section, we will describe briefly the stabilized formulation employed for the thermal
coupling. For both formulations, standard and logarithmic, the stabilization used departs
from the Variational Multi-Scale (VMS) method, widely described in [25]. The method
consists in splitting the unknowns U into two different parts: the component that is
computed by the FE space, denoted by Uh and the part that cannot be solved by the FE
space, called sub-grid scale and which is denoted by Ũ . The stabilized method employed
in this paper is analogous to the one presented in [29] for the standard formulation and the
one presented in [23] for the log-conformation reformulation for the viscoelastic fluid flow.
As the main ideas of the stabilization method have been already presented previously, in
this section we restrict us to the extension to the thermal coupling.

4.1 Residual-based VMS methods

Firstly, we present the case of the standard formulation. Suppose that Lstd(Û ; ·) is a
linear operator for a given Û = [û, p̂, σ̂, ϑ̂] known. Introducing the sub-grid scale, and
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integrating by parts, the method consists in finding Uh :]0, T [−→ X h, such that

Gstd(ϑh;Uh,V h) +Bstd(Uh;Uh,V h) +
∑
K

〈Ũ ,L∗(Uh;V h)〉K = Lstd(V h), (20)

for all V h ∈ X h, where L∗(Û ; ·) is the formal adjoint of Lstd(Û ; ·), typically without
considering boundary conditions, Ũ is the sub-grid scale, which needs to be approximated

and has components Ũ=
[
ũ, p̃, σ̃, ϑ̃

]
. All approximations have been considered continu-

ous; in this case expression (20) is justified in [41]. Similarly, for the log-conformation
reformulation, we have to find Uh :]0, T [−→ X̄ h such that

Glog(ϑh;Uh,V h) +Blog(Uh;Uh,V h) +
∑
K

〈Ũ ,L∗(Uh;V h)〉K = Llog(ϑh;V h), (21)

for all V h ∈ X h. Let us remark that for both formulations (standard and logarithmic)

the same operator L∗
(
Û ;V

)
is used:

L∗(Û ;V ) :=


∇ · χ− (ϑ̂)∇ · (2ηs∇sv)− ρû · ∇v −∇q

−∇ · v
1

2ηp(ϑ̂)
(I + h(σ̂)) · χ+∇sv − Λ(ϑ0) (û · ∇χ+ g∗(û,χ))

ρCpû · ∇ξ − k∆ξ

 , (22)

where in this case g∗(û,χ) = χ · (∇û)T +χ ·∇û. As the operators Dt and L were defined
previously for both formulations, the sub-grid scales can be written in terms of the finite
element component:

Ũ = αP̃ [F −Dt(ϑh;Uh)− L(Uh;Uh)], (23)

where we denote as P̃ the L2 projection onto the space of sub-grid scales. The ASGS
(Algebraic Sub-Grid Scales) method is recovered if P̃ is the projection onto the space of
FE residuals; however if P̃ is taken as the orthogonal projection to the FE space, P⊥,
then the OSGS (Orthogonal Sub-Grid Scales) method would be recovered.

Regarding matrix α that appears in expression (23), it is the diagonal matrix of stabi-
lization terms, α = diag(α1Id, α2, α3Id×d, α4) with Id the identity on vectors of Rd, Id×d
the identity on second order tensors and the parameters αi, i = 1, 2, 3, 4 are computed as

α1 =

[
c1
η0(ϑh)

h21
+ c2

ρ|uh|
h2

]−1
, (24)

α2 =
h21
c1α1

, (25)

α3 =

[
c3

1

2ηp(ϑh)
+ c4Λ(ϑ0)

(
|uh|
h2

+ |∇uh|
)]−1

, (26)

α4 =

[
c5
k

h21
+ c6

ρCp|uh|
h2

]−1
, (27)

where ci with i = 1, .., 6 are constants, h1 is the characteristic length computed as the
square root of the element area or the cubic root of the element volume depending on the
dimension of the case, and h2 is another characteristic length computed as the element
length in the streamline direction (see [42] for more details). The constants ci, i = 1, .., 6
are algorithmic parameters in the formulation. The values employed in this paper for the
numerical simulations are: c1 = 4.0, c2 = 1.0, c3 = 4.0, c4 = 0.25, c5 = 12.0 and c6 = 2.0.
We keep these values constants for all flows.
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Inserting (23) in (20) for the standard formulation, with α given above and using the
adjoint operator (22), we obtain the following problem: find Uh :]0, T [−→ X h such that

(Gstd(ϑh;Uh),V h) +Bstd(Uh;Uh,V h) + S1,std(uh, ϑh;Uh,V h) + S2(Uh,V h)

+ S3,std(Uh;Uh,V h) + S4,std(uh,σh;Uh,V h) = Lstd(V h) +R1,std (uh, ϑh;V h) , (28)

for all V h ∈ X h. The details of each stabilized term can be found in the work of Castillo
and Codina [29], with exception of the expression S4,std, which corresponds to stabilization
terms of the energy equation. These terms are:

S1,std

(
ûh, ϑ̂h;Uh,V h

)
=
∑
K

α1

〈
P̃

[
ρ
∂uh
∂t
−∇ · σh −∇ · 2ηs(ϑ̂h)∇suh

+ρûh · ∇uh +∇ph] ,

−∇ · χh +∇ · 2ηs(ϑ̂h)∇svh + ρûh · ∇vh +∇qh
〉
K
, (29)

S2 (Uh,V h) =
∑
K

α2

〈
P̃ [∇ · uh] ,∇ · vh

〉
K
, (30)

S3,std

(
Ûh;Uh,V h

)
=
∑
K

α3

〈
P̃

[
1

2ηp(ϑ̂h)
(I + h(σ̂h))σh −∇suh

+Λ(ϑ0)

(
∂σh
∂t

+ gstd(ûh;σh)

)]
,

− 1

2ηp(ϑ̂h)
(I + h(σ̂h)) · χh −∇svh

+Λ(ϑ0) (ûh · ∇χh + g∗(ûh,χh))〉K , (31)

S4,std (ûh, σ̂h;Uh,V h) =
∑
K

α4

〈
P̃

[
ρCp

(
∂ϑh
∂t

+ ûh · ∇ϑh
)
− k∆ϑh − σ̂h : ∇sûh

]
,

−ρCpûh · ∇ξh + k∆ξh〉K , (32)

R1,std

(
ûh, ϑ̂h;V h

)
=
∑
K

α1

〈
P̃ [f ] ,−∇ · χh +∇ · 2ηs(ϑ̂h)∇svh

+ρûh · ∇vh +∇qh〉K . (33)

Recall that if P̃ = I we obtain the ASGS method, and if P̃ = P⊥h = I − Ph the we would
be considering the OSGS method.

Analogously, in the case of the stabilization formulation for the logarithmic case, in-
serting (23) in (21) and using the adjoint operator defined in (22), we obtain the following
problem: find Uh :]0, T [−→ X h such that

(Glog(ϑh;Uh),V h) +Blog(Uh;Uh,V h) + S1,log(uh, ϑh;Uh,V h) + S2(Uh,V h)

+ S3,log(Uh;Uh,V h) + S4,log(Uh;Uh,V h) = Llog(V h) +R1,log (uh, ϑh;V h) . (34)

In this case, Si,log, with i = 1, 2, 3 and Rj,log with j = 1, 3 are detailed in [23] and the only
difference is that now we have to consider the temperature-dependence of the viscoelastic
variables. These terms are

S1,log(ûh, ϑ̂h;Uh,V h) =
∑
K

α1

〈
P̃
[
ρ
∂uh
∂t
−∇ · (Υ2(ϑ0) exp(ψh))−∇ · (2ηs(ϑ̂)∇suh)

+ ρûh · ∇uh +∇ph
]
,

−∇ · χh +∇ · (2ηs(ϑ̂h)∇svh) + ρûh · ∇vh +∇qh
〉
K
, (35)
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S2,log(Uh,V h) =
∑
K

α2

〈
P̃ [∇ · uh],∇ · vh

〉
K
, (36)

S3,log(ûh, ϑ̂h;Uh,V h) =
∑
K

α3

〈
P̃
[ 1

2λ0(ϑ̂h)
(exp(ψh)− I) · (h(exp(ψh)) + I)−∇suh

+ Υ1(ϑ0)
(∂ exp(ψh)

∂t
+ glog(ûh;uh,ψh)

)]
,

− 1

2ηp(ϑ̂h)
χh −∇svh + Υ2(ϑ0) (ûh · ∇χh + g∗(ûh,χh))

〉
K
,

(37)

R1,log(ûh, ϑ̂h;V h) =
∑
K

α1

〈
P̃
[
f
]
,−∇ · χh +∇ · (2ηs(ϑ̂h)∇svh) + ρûh · ∇vh +∇qh

〉
K
.

(38)

Regarding S4,log, it is as follows:

S4,log

(
Ûh;Uh,V h

)
=
∑
K

α4

〈
P̃ [ρCpûh · ∇ϑh − k∆ϑh,

−
(

Υ2(ϑ0) exp(ψ̂h)− I
)

: ∇sûh
]
,−ρCpûh · ∇ξh + k∆ξh

〉
K
, (39)

The same considerations made for the standard formulation about the projections and the
different stabilization methods carry over to the log-conformation reformulation.

4.2 Split-OSS stabilization

This stabilization method comes from considering two assumptions in the residual-based
VMS methods. The first one is that the projection considered is P̃ = P⊥h , and the second
one is to neglect the cross local inner-product terms together with other terms that do not
contribute to stability. The result is a simplified method that is not consistent but whose
convergence rate in h is optimal, as explained in [29]. The split strategy is only considered
over the stabilization terms of the momentum equation, and the reason for this is detailed
in [43]. If the split term-by-term in the constitutive equation is done, convergence for the
non-linear iterations turns out to be very difficult to attain.

Therefore for the standard formulation, the stabilization considered finally consists in
finding Uh :]0, T [−→ X h such that

(Gstd(ϑh;Uh),V h) +Bstd(Uh;Uh,V h) + S⊥1,std(uh;Uh,V h) + S⊥2 (Uh,V h)

+ S⊥3,std(Uh;Uh,V h) + S⊥4,std(uh,σh;Uh,V h) = Lstd(V h). (40)

for all V h ∈ X h. For S⊥i,std with i = 2, 3, 4 we consider the same expression detailed in

(30), (31) and (32) for Si,std, but now taking into account that P̃ = P⊥h as it has been
specified above. The expression of S⊥1,std in (40) is now as follows:

S⊥1,std (ûh;Uh,V h) =
∑
K

α1

〈
P⊥h [∇ · σh] ,∇ · χh

〉
K

+
∑
K

α1

〈
P⊥h [∇ph] , qh

〉
K

+
∑
K

α1

〈
P⊥h [∇ρûh · ∇uh] , ρûh · ∇vh

〉
K
. (41)

For the log-conformation reformulation we have the following stabilized form: find
Uh :]0, T [−→ X h such that

(Glog(ϑh;Uh),V h) +Blog(Uh;Uh,V h) + S⊥1,log(uh, ϑh;Uh,V h) + S⊥2 (Uh,V h)
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+ S⊥3,log(Uh;Uh,V h) + S⊥4,log(Uh;Uh,V h) = Llog(V h), (42)

for all V h ∈ X h. As in the standard formulation, for the terms S⊥i,log with i = 2, 3, 4, we

can consider the expressions detailed in (36), (37), (39) taking P̃ = P⊥h . The expression
of S⊥1,log in (42) is now as follows:

S⊥1,log(ûh, ϑ̂h;Uh,V h) =
∑
K

α1

〈
P⊥h

[
∇ · (Υ2(ϑ0) exp(ψh))

]
,∇ · χh

〉
K

+
∑
K

α1

〈
P⊥h

[
∇ph

]
,∇qh

〉
K

+
∑
K

α1

〈
P⊥h

[
ρûh · ∇uh

]
, ρûh · ∇vh

〉
K
.

There are many benefits associated to the use a split term-by-term stabilization instead
of a residual-based one: the first one is the simplicity, since some cross-local products have
been neglected, the second one is that some negative terms that do not contribute to
stability have been deleted, therefore the scheme is more stable. Moreover, the scheme
has turned out to be more efficient in solving problems with high gradients and when
the Weissenberg number is relatively high in viscoelastic fluid flow problems [44, 23].
Furthermore, cumbersome elementwise terms of the form ∇ · η∇svh, with η a variable
function depending on temperature, do not need to be evaluated.

4.3 Linearization and algorithm

The set of equations of the thermally coupled problem with incompressible viscoelastic
flows presents a high number of non-linear terms, in particular in the momentum and in
the constitutive equation. Regarding the algorithm employed, it is displayed in Algorithm
1 (only considering the standard formulation, however for the log-conformation reformu-
lation the algorithm would be analogous). Let us make the following remarks about the
algorithm used:

• It is iterative for the coupling, but monolithic for the fluid flow problem. It means
that in each time-step the parameters dependant on temperature for solving the
viscoelastic fluid flow problem and the stress work for the temperature problem are
continuously updated.

• The nonlinear term in the momentum equation can be linearized with a fixed point
scheme or with Newton-Raphson’s method.

• In the case of the log-conformation reformulation, the exponential terms that appear
both in the momentum equation and in the constitutive equation have been linearized
using a Taylor development (see [23]), taking the tensor ψ̂ as the one obtained from
the previous iteration of the current time step.

• The computation of the exponential function, the gradient and the divergence of the
exponential function of the variable ψh at the previous iteration must be calculated
at each iteration.

• For the convective term of the momentum equation, we can use a fixed point scheme
or Newton-Raphson’s scheme. However, for the non-linear terms in the constitutive
equation, we have used a Newton-Raphson linearization always, and it has been
decisive to be able to compute some high Weissenberg number cases and get the
optimal convergence of the method.

• Stabilization parameters are computed with the values of the unknowns at the pre-
vious iterations.
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Figure 2: Non-isothermal flow past a cylinder. Geometry and computational boundaries.

• The iterative treatment of the orthogonal projection is coupled to the linearization
of the total system. Specifically, the orthogonal projection of any function f has
been approximated as P⊥h [f i] ≈ f i − Ph[f i−1], the superscript being the iteration
counter.

5 Numerical results

In this section several numerical examples are presented. Firstly, the flow past a cylinder is
studied, using the standard formulation together with the PTT constitutive equation, and
taking the Williams-Landel-Ferry function to establish the relations between temperature
and viscoelastic parameters. The second example is the extension 1:3, where the log-
conformation reformulation is employed, the Oldroyd-B constitutive equation is considered
and the Arrhenius function is used, instead of the WLF, as dependence method between
temperature and viscoelastic properties. All computations have been performed using the
Split-OSS stabilization explained in Section 4.2. Likewise, for each case the formulation
chosen corresponds to that of the reference of comparison, when possible.

5.1 Flow around a cylinder

The first example is the well-known flow past a cylinder, a typical benchmark to check
formulations for simulating viscoelastic fluid flows. This has been extensively studied
by Peters and Baaijens [45] to evaluate the performance of constitutive equations for
both polymer solutions and melts, although supposing an isothermal flow. Moreover,
these authors also explore the non-isothermal case in [2]. There, the numerical result is
obtained using a stabilized discontinuous Galerkin method for the viscoelastic equations,
and a regular Galerkin method employing a bi-quadratic interpolation of the temperature
to solve the temperature equation. Coupling is carried out using a fixed point iteration.
The authors also discuss the differences in the stress field between isothermal and non-
isothermal problems, as we will do.

5.1.1 Setup

The computational domain extends 12 times the length of the radius upstream of the
cylinder centre and 18 times downstream, as shown in Figure 2.

First, we define the parameters of the non-isothermal viscoelastic fluid flow problem.
The relaxation time for the reference temperature λ(ϑ0) is 0.1 s, the total viscosity for the
reference temperature is η0(ϑ0) = 1.0× 104 Pa · s, and the parameter β is set to 0.5. As
it has been explained, the total viscosity and relaxation time are temperature-dependent,
and this relation is defined by the WLF function gwlf defined in Section 2.1. In this case the
constants c1 and c2 of this function are set as 4.54 and 150.36, respectively. The mobility
parameter ε of the PTT constitutive model is 0.1. The density is ρ = 921 kg ·m−3, the
specific heat is Cp = 1.5 kJ · kg ·K−1 and the conductivity k is fixed to 0.17 W ·m ·K−1.
The reference temperature ϑ0 is set to 462 K.
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Algorithm 1 General algorithm for thermal coupling using VMS.

read initial condition u0
h and ϑ0h

set p0h = 0, ψ0
h = 0

for j = 0, ...,m− 1 do (Temporal loop)
set k=0
set uj+1,0

h = ujh, pj+1,0
h = pjh, σj+1,0

h = σjh
while not converged do (Coupling loop)

k ← k + 1
set i = 0
set uj+1,k,0

h = uj,kh , pj+1,k,0
h = pj,kh , σj+1,k,0

h = σj,kh
set λj+1,k = λ(ϑj+1,k−1

h ) and ηj+1,k
0 = η0(ϑ

j+1,k−1
h )

while not converged do
i← i+ 1
compute “residuals”: Ru1, Ru2, Ru3, Rσ

compute projections: Ph [Ru1], Ph [Ru2], Ph [Ru3], Ph [Rσ]
compute stabilization parameters:

αj+1,k,i−1
1 , αj+1,k,i−1

2 and αj+1,k,i−1
3 with U j+1,k,i−1

solve viscoelastic fluid flow equations for uj+1,k,i
h , pj+1,k,i

h and σj+1,k,i
h

check convergence
end while
set converged values
uj+1,k
h = uj+1,k,i

h

pj+1,k
h = pj+1,k,i

h

σj+1,k
h = σj+1,k,i

h

set the stress work as σj+1,k
h : ∇uj+1,k

h

set i = 0
set ϑj+1,k,0

h = ϑj,kh
compute stabilization parameter αj+1,k,i−1

4 with uj+1,k
h

while not converged do
i← i+ 1
compute “residual” Rϑ

compute projection Ph [Rϑ]

solve the energy equation for ϑj+1,k,i
h considering the stress work

check convergence
end while
set converged values
ϑj+1,k
h = ϑj+1,k,i

h

end while(End coupling loop)
set converged values
uj+1
h = uj+1,k

h

pj+1
h = pj+1,k

h

σj+1
h = σj+1,k

h

ϑj+1
h = ϑj+1,k

h

end for(End temporal loop)
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Figure 3: Non-isothermal flow past a cylinder. Zoom of computational mesh employed.

Regarding the boundary conditions of the problem, for the velocity no-slip conditions
are imposed on the top wall Γwall and the cylinder surface Γcyl, and symmetry conditions
are prescribed along the axis Γsym. On the other hand, a fully developed parabolic velocity
profile and the associated elastic stress are prescribed at the inlet Γin. These are given by:

ux =
3Q

8R

(
1− y2

(2R)2

)
, uy = 0,

σxx = 2λ(ϑ0)(1− β)η0(ϑ0)

(
∂ux
∂y

)2

, σxy = (1− β)η0(ϑ0)

(
∂ux
∂y

)
, σyy = 0,

where Q is the flow rate, and R is the cylinder radius. Note that stresses are prescribed
using the Oldroyd-B model and with the only purpose of accelerating convergence. For
the outlet Γout, the horizontal velocity is left free, the vertical velocity is taken equal to
zero and the pressure is prescribed to zero. On the other hand, regarding the temperature
boundary conditions, the reference temperature ϑ0 is imposed at the inlet Γin and on the
top wall Γwall as 462 K.

We will compute the problem for different Weissenberg numbers (already defined in
Section 2.2) We = λU/R where U is the characteristic velocity, written as a function of the
flow rate as U = 3Q/2R; R is the cylinder radius defined above. As considered in reference
[2], the convective term of the momentum equation is neglected in all the computations.

About the FE discretization considered, the mesh has 58591 linear elements and 36174
nodes. We have to remark that the refinement around the cylinder wall is significant, as
shown in Figure 3, where the mesh is partially shown. Although all simulations have a
steady-state solution, all of them have been computed using a temporal discretization to
facilitate the convergence of the iterative algorithm. For all the cases, the scheme used is
BDF1 (as explained in Section 3), and the time step is fixed to δt = 5× 10−5 s.

5.1.2 Results

Results of the simulation for We = 4.0 are shown in Figures 4 and 5. In particular, Figure
4 shows the distribution of the temperature in the vicinity of the cylinder while Figure 5
displays the distribution of the stresses in the same location.

• For the distribution of the temperature, this field rises significantly downstream,
reaching the maximum temperature at 474.42 K. The difference of temperature
between the initial or the temperature fixed on the walls at 462 K and the maximum
temperature reached is the consequence of the stress work, represented by the term
added to the energy equation, expressed as the product between the stresses and
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Figure 4: Non-isothermal flow past a cylinder. Distribution of temperature ϑ around the
cylinder. We = 4.

the symmetric gradient of the velocity field. In comparison with the typical models
associated with Newtonian fluid flows, the viscoelastic fluid flow has a new source of
heat, which is represented in the Figure 4. On the other hand, in comparison with
[2], the maximum value reached is slightly smaller, although the general distribution
of the temperature field is similar to the one obtained by the authors of this reference.

• Regarding the distribution of the stresses in Figure 5 near the cylinder, the maxi-
mum values are reached in two significant locations: one in the top of the wall of
the cylinder, and another one at a point downstream, located in the centerline (or
symmetric boundary) of the domain.

The temperature effect over the stress field can be shown in Figure 6, where the isother-
mal case is compared with the non-isothermal case, and both cases considering We = 4.0.
As this figure shows, a significant reduction in stresses is found when the temperature
coupling is considered. That reduction is located both over the wall of the cylinder and
downstream. In [2], the reduction reached in the stresses is over 40% comparing two cases.
Although in our computations this difference is not so pronounced as in the reference work,
the reduction is equally considerable, over the 30%.

In Figure 7, a comparison between the difference of temperatures is performed between
the viscoelastic case for We = 4 and the Newtonian viscous case. At first sight, the major
difference is that the viscoelastic case reaches higher temperatures than the Newtonian
case; however, the temperature distribution on the cylinder and downstream is also sig-
nificantly different. While in the viscoelastic case the maximum peak of temperature is
reached downstream, in the Newtonian case it is reached on the cylinder. On the other
hand, computations were executed for some Weissenberg numbers to study the differences
between temperatures. The parameter ∆ϑ = ϑ − ϑ0 (difference between reference tem-
perature and temperature distribution), around the cylinder is plotted in Figure 8. The
results in these last figures seem to be coherent: while the Weissenberg number increases,
the stresses also do, and therefore by the definition of viscous dissipation the internal work
is more relevant, causing an increase of the temperature around the cylinder and down-
stream. Results are in agreement with the graph shown in [2] from a qualitative point of
view. Quantitatively, the comparison is not meaningful, as we have not performed mesh
convergence studies and these are not presented in [2], either.
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Figure 5: Non-isothermal flow past a cylinder. Distribution of stresses. Above: component
σxx, middle: component σyy , and below: component σxy around the cylinder. We = 4.

Figure 6: Non-isothermal past flow a cylinder. Stress component σxx around and down-
stream of cylinder in isothermal and non-isothermal cases.
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Figure 7: Non-isothermal flow past a cylinder. Increase of temperatures around the cylin-
der and downstream for Newtonian fluid and a viscoelastic fluid, We = 4.

Figure 8: Non-isothermal flow past a cylinder. Increase of temperatures around the cylin-
der and downstream for several Weissenberg numbers.
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5.2 1:3 Expansion

In this section, the case of the 1:3 expansion is simulated. This benchmark is motivated
by the work of Shahbani-Zahiri et al. [11], where a complete study is done of this problem,
exploring the solution for different expansion angles. That is an important example due
to the formation and growth of symmetric and asymmetric regions that play an important
role in the viscous dissipation, temperature distribution, and heat transfer rate. Following
ideas similar to those exposed in the cited paper, we study the temperature effect over the
patterns. On the one hand, both the fluid inertia and elasticity have a significant effect
on the flow pattern of non-isothermal viscoelastic fluids, and therefore, the research of the
effects of elastic properties and inertial force on the heat transfer is relevant and worth. In
the literature, more papers treat this problem for a low Reynolds (when bifurcation effects
are not present) than for a relatively high Reynolds number. When the Reynolds number
is around 50 or 100 the flow of Newtonian fluids is known to give rise to an asymmetric
pattern: larger and smaller recirculation zones appear behind the step change. This
phenomenon is characteristic in planar expansions, and it is suggested in [46] that this
could be explained by the Coanda effect. This effect explains that any perturbation of
the flow field, pushing the main flow to one of the sides of the expansion, gives rise to
larger velocities and lower pressures. Consequently, the asymmetry will naturally tend
to be accentuated. This example has an additional peculiarity: the asymmetry of the
steady-state solution if the Reynolds number is greater or equal than 40 or/and if the
Elasticity number El= We/Re is greater than 0.1, even if the geometry is symmetrical.
This asymmetry was accurately studied in the literature, under theoretical, experimental,
and numerical works with Newtonian fluids, such as [47], [48], or the work developed by
Hawa et al. [49], where a bifurcation analysis and linear stability study is carried out.
Additionally we have to remark the works [50] and [46]. In [46], Oliveira studies the
bifurcation in different isothermal scenarios that include Newtonian and viscoelastic fluid
flows, simulating the problem with a finite volume method for a FENE type constitutive
model.

In [11] the constitutive model employed is the so called exponential Phan Thien-Tanner
(EPTT) model, similar to the PTT model explained in this paper, with the difference that
the exponential of h(σ) is considered, using the notation introduced in Section 2.1. In our
computations, the Oldroyd-B constitutive model is employed, but instead of the standard
formulation, the log-conformation approach is used. This formulation seems to be more
adequate than the standard one due to the high Weissenberg number reached in some
computations.

In this section, apart from studying the thermal coupling, we will explore also the effect
of the four dimensionless numbers that characterize the problem; how the flow pattern,
and the temperature distribution change as the Weissenberg number (elasticity) increases
or the Prandtl and the Brinkman number vary. Note that in the reference work [11] only
the inertial and the elasticity influence are reported.

5.2.1 Setup

The computational geometry for this problem is represented in Figure 9a. In this case,
the parameters of the model are as follows: h = 0.1 m (not to be confused with the mesh
size), H = 0.3 m, θ = 60◦. Regarding the lengths of the three parts of the duct, these
are set as: L1 = 60h m, L3 = 120h m and L2 is calculated taking into account the angle
of the expansion, therefore it is set as L2 = 1

5
√
3

m. Regarding the computational mesh,

different grids have been employed for the computations, but all of them considering Q1
(bilinear) elements, following the structure displayed in Figure 9b. The characteristics of
the mesh are detailed in Table 1 where NY indicates the number of the mesh cells in the
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Mesh NY ∆ymin NX1 NX2 ∆xmin Nodes Elements

M1 20 0.0050 140 400 0.0072 11 781 11 200
M3 52 0.0019 358 1024 0.0027 72 384 73 829

Table 1: 1:3 expansion. Main characteristics of the meshes employed.

y-direction of the channel. Moreover, NX1 and NX2 are the number of mesh cells for the
first and second sections of the channel in the x-direction.

The Reynolds number can be computed using the maximum inlet velocity (from this
point it will be indicated as Remax = ρUmaxL/η0) or using the average of the incoming
velocity (denoted by Reavg = ρUavgL/η0 to avoid future confusions). The characteristic
length is taken as h (height of the small channel). The remaining fluid parameters are:
η0 = 4.07 Pa · s, ρ = 1226 kg ·m−3, and β = 0.5 (recall that ηs = βη0, ηp = (1−β)η0). For
the Arrhenius function, the constant cr is 1720 K. Regarding the temperature parameters,
these are the specific heat Cp and conductivity k, computed using the Brinkman number
and the Prandt number, which are suitably defined at the end of Section 2.2. The reference
temperature ϑ0 is set to 463.5 K. Now we define the boundary conditions. For the velocity,
no-slip conditions are imposed on the walls of the channel Γwall and a fully developed
parabolic velocity profile together with the associated elastic stress are prescribed at the
inlet Γin. These are given by:

ux =
3Q

4h

(
1− y2

h2

)
, uy = 0,

σxx = 2λ(ϑ0)(1− β)η0(ϑ0)

(
∂ux
∂y

)2

, σxy = (1− β)η0(ϑ0)

(
∂ux
∂uy

)
, σyy = 0,

where Q is the flow rate, and h is the height of the small channel. For the outlet Γout, the
horizontal velocity is left free, the vertical velocity is taken equal to zero and the pressure
is prescribed to zero, constant. On the other hand, regarding the temperature boundary
conditions, the reference temperature ϑ0 is imposed at the inlet Γin and on the top wall
Γwall to 563.15 K. Note that the inlet fluid is 100 K colder than the temperature of the
walls.

5.2.2 Newtonian case. Validation

The Newtonian case is computed for the isothermal case first for validations, as this case is
widely reported in the literature. Later the results will be compared with the thermally-
coupled case. Very similar results are obtained for meshes M1 and M3, showing that
the results obtained can be used for comparison with the literature. In particular, this
comparison is done using the results of mesh M3, although mesh M1 is employed to study
the trend of the vortices when different dimensionless numbers are changed.

As it is explained in [46], in most earlier calculations of the phenomenon, the asym-
metric flow was usually triggered by introducing a slight geometrical asymmetry in the
symmetric configuration or by adding a small perturbation to the velocity profile imposed
at the inlet or to the whole initial velocity field (see, for example, [51, 47, 48, 49, 52]).
In our case, as happened in the work of Oliveira et al. [46], no artificial devices have
been required if the ASGS stabilization is employed. However, if the stabilization is of
split-type and the Reynolds number is low, the bifurcation must be triggered using a bifur-
cation produced by a higher Reynolds number as an initial solution, for example. In the
case of Newtonian fluid considering the isothermal case, the critical Reynolds number at
which bifurcation occurs found for our computations is Rec = 53.5. Comparing with the
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(a)

(b)

Figure 9: 1:3 expansion. Computational geometry and scheme of vortices (a) and compu-
tational mesh M1 (b).

Authors Critical Reynolds

Oliveira et. al [46] 54.0
Fearn et al. [47] 53.9
Drikakis et al. [48] 53.3
Hawa and Rusak [49] 53.8
Mishra and Jayaraman [51] 53.0
Present Study 53.5

Table 2: 1:3 expansion. Comparison of critical Reynolds in literature for the pitchfork
bifurcation.

literature, this approach is rather accurate, considering that different methods have been
applied in each case. For example, in the work of Oliveira et al. [46] the critical value is
Rec = 54 using a finite volume method; for Fearn et al. [47] it was Rec = 53.9 using in that
case a FE framework. We can find also the work of Drikakis [48] which uses a fourth-order
finite-difference method and the critical Reynolds value is Rec = 53.3. In the literature,
we find also other examples such as the work of Hawa and Rusak [49], which employ a
stream function finite-difference formulation and where the critical Reynolds number is
Rec = 53.8. In Table 2, this comparison is summarized. The goal of this study is not to
be accurate in the exact location of this critical number, but to validate the algorithm and
check the thermal coupling for considering later the viscoelastic case from a qualitative
point of view.

For the coupling with the temperature, we consider a Weissenberg number equal to zero
to study the differences with the isothermal case. On the other hand, we fix the Prandtl
number to 1 and the Brinkman number also to 1. The Reynolds and the Weissenberg
numbers are computed taking the average of the fluid velocity at the channel inlet. The
parameters of the problem are determined according to the values of these dimensionless
numbers.

In Figures 10 and 11 several plots of the stationary solution have been taken for differ-
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ent Reynolds numbers to show some aspects of this problem: the streamlines in each case
and the distribution of the temperatures. All the plots correspond to the non-isothermal
Newtonian case, although the pattern of vortices is similar in all the computation cases.
These plots include from relatively low Reynolds number such as Re = 10, where a sym-
metric solution with small vortices is shown, up to Re = 200, when the stationary solution
presents additional vortices.

• It can be observed in Figure 10 that for Re = 10 and Re = 30 the solution is sym-
metric, although we can see as the length of the vortices is higher as the Reynolds
number increases. For Re = 50 the solution has bifurcated and presents an asym-
metry: now the vortex on the top is smaller than the vortex in the bottom. Finally,
for Re = 100 we can see that apart from the non-symmetric solution, a new vortex
has emerged on the top, although displaced downstream. In other words, when the
inertial forces are more dominant in comparison with the viscous forces, the fluid
flow becomes unstable and the asymmetry appears.

• Regarding the contours of temperature, we can see graphically the effect of the
viscous dissipation. As it was specified in the Setup section of the problem, the
temperature at the inlet of the channel is 100 K lower than on the walls. Despite this
fact, viscous dissipation generates energy in the flowing fluid, reaching the maximum
peak when the fluid flow does the transition from the small part of the channel
to the wider part. This effect is due to the formation of symmetric recirculation
regions, causing a displacement of the maximum peak of heat in the central zone.
Moreover, we have to stand out that the maximum value of temperature is moved
into the channel when the Reynolds number increases. When Re grows and there
is a formation of asymmetric vortices, the location of the maximum temperature
zone slightly diverges to the wall where the smaller vortices are formed. Therefore,
the maximum temperature zone is generated in the vicinity of the largest vortex
and close to its center. These results are in agreement with the results reported by
Shahbani-Zahiri [11].

In Figure 11 we plot also streamlines and temperature contours for a higher Reynolds
number.

• For Re = 150 we can remark that the vortices have been enlarged in comparison
with the case Re = 100, and how the vortex on the top starts to split into two
separated vortices. For Re = 200, the plot of streamlines shows the appearance of
a new vortex near the bottom wall, apart from the evident enlargement of some of
the other vortices.

• The distribution of temperature displays a pronounced gradient of temperatures,
and note that the small channel transports a cold flux. In this case, it seems clear
that the advection velocity in the energy equation has an important role in this
change of temperature distribution. Even the maximum peak of temperatures is not
located now at the center of the channel, it can be found in one of the asymmetric
vortices.

Now, we will compare the length of the vortices between different cases (isothermal
and non-isothermal). Note that in Figure 9a a general scheme of the vortices is plotted in
the domain, apart from the general notation to describe this domain. This comparison is
displayed in Figure 12, considering both cases: the isothermal (plotted in blue) and the
non-isothermal (plotted in red) cases for the Newtonian fluid flow.
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Figure 10: Streamlines and temperature contours for Re = 10, 30, 50 and 100.
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Figure 11: 1:3 expansion. Streamlines and temperature contours for Re = 150 and Re =
200.

• At the first sight, the length of the vortices in the non-isothermal case is higher
than in the isothermal scenario, but that is not the only difference, also the critical
Reynolds number where the bifurcation occurs has changed significantly. As we
have analyzed previously, while the first bifurcation occurs for a critical Reynolds
around 53-54 for the isothermal case, if the thermal coupling is considered, that first
bifurcation is found around a Rec = 30.

• The difference between Reynolds numbers is even more pronounced for the second
bifurcation: while in the isothermal case the critical Reynolds is 117 (from this point
a third vortex emerges in the same side of the channel than the smaller vortex, as
represented in Figure 9a), in the non-isothermal case the critical number is around
60. In this last case, the third vortex grows significantly, even overtaking in length
vortex Xr1 (that occurs for Re = 150, for example).

5.2.3 Weissenberg number study

As it was commented previously, for non-Newtonian viscoelastic flows the number of in-
dependent parameters that can be varied increments significantly. We can now modify
the Weissenberg number or the β (that measures the balance between polymeric and sol-
vent viscosity) parameters, for example, apart from the Reynolds number. We have to
remark that the log-conformation reformulation to solve the problem in the case of high
Weissenberg numbers has been crucial to obtaining solutions, despite the increment of the
computational cost associated with that formulation [23].

In this study, the main results will put the focus on how viscoelasticity influences the
variation of upper and lower vortices in the example we are analyzing. In this sense, we
can observe the plots in Figure 13, where a comparison of the length of vortices for varying
Reynolds numbers is displayed. The bifurcation plot for the viscoelastic liquid for different
Weissenberg numbers is compared with that of the Newtonian case. As it is concluded in
Oliveira et al. [46], two main conclusions can be drawn:

• The first one is the fact that the critical Reynolds number in which the bifurcation
(transition between symmetric and asymmetric solution) is produced is delayed to
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Figure 12: 1:3 expansion. Length of vortices versus the Reynolds number for the Newto-
nian fluid flow.

higher values. For the Newtonian case, that number is around 53.3, and in our
computations, for We = 1 it is around 60, and for We = 2 the critical number
is around 67. Therefore, we can conclude that viscoelasticity is a stabilizing factor,
retarding the appearance of the asymmetric solution with respect to the We number.
In terms of the elastic forces, we can conclude that when these are more relevant in
relation with viscous forces, then the fluid flow is more stable.

• The second one is the size of the vortices. In general, for viscoelastic cases, the size is
smaller when it is compared with the Newtonian case (see Figure 13a), in particular
for the higher vortex Xr1. For the smaller vortex, a contrary effect occurs: the size
is higher. Therefore, we can conclude that the difference between vortices is lower in
the presence of elasticity. That occurs clearly in a Reynolds number range between
0 and 100; when the Reynolds number is more relevant, the effect of viscoelasticity
is not that remarkable in this aspect.

• In Figure 13b we compare the size of the vortices with the Weissenberg number, with
a range of We from 0 to 2. This plot reinforces the previous idea: that elasticity is a
stabilizing factor of the bifurcation. The difference between vortices is smaller (the
smaller vortex increases while the larger vortex decreases) when the Weissenberg
number increases, until the symmetry of the solution is recovered for a We = 2.

In Figure 14, the effect of temperature is analyzed in the viscoelastic case, in particular
taking We = 1. A similar effect as the one reported in the Newtonian case is reproduced
here: an increase of vortex length and the asymmetry appearing at a low Reynolds number
for the non-isothermal case. Also, a comparison between non-isothermal cases considering
different Weissenberg numbers (We = 1, 2, 3) together with the Newtonian case was carried
out; however, no significant differences were found referring to the vortex length or the
Reynolds number where the asymmetry occurs. The reason seems to be that the length of
the vortices is dominated mainly by the Prandtl number when the coupling is considered.

Despite the length of the vortex not being affected by elasticity, in Figure 15 the maxi-
mum temperature peaks are plotted in both cases: the Newtonian one and the viscoelastic
case considering We = 1. As in the previous benchmark, an increase of temperature is
noticed when the viscoelastic fluid flow is contemplated.
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(a) (b)

Figure 13: 1:3 expansion. Length of vortices versus the Reynolds number (a), and length
of vortices versus the Weissenberg number for Re = 66.67 (b).

Figure 14: 1:3 expansion. Viscoelastic fluid flow considering the coupling for temperature
with Pr = 1, Br = 1.

Figure 15: 1:3 expansion. Maximum peaks of temperatures with Pr = 1, Br = 1.
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(a) (b)

Figure 16: 1:3 expansion. Effect of Prandtl number on vortex length, We = 0.1, Br = 1.
Length of vortices versus the Reynolds number (a), and length of vortices versus the
Prandtl number for Re = 40 (b).

5.2.4 Prandtl number study

The influence of the Prandtl number on the temperature and on the vortices length is
investigated to see how the flow pattern changes when it is increased. In Figure 16 we can
observe with more detail that effect.

• Firstly, in Figure 16a we compare the vortices for three different Prandtl number,
varying the Reynolds number. Apart from the fact that the vortices are smaller in
general when the Prandtl number is greater, also the critical Reynolds where the
bifurcation occurs changes. While for Pr = 1 and Pr = 100 the first bifurcation is
situated at Re = 30 approximately, for Pr = 250 it is located at Re = 40. The second
bifurcation suffers a more pronounced displacement regarding Reynolds number: for
Pr = 1 it is located at Re = 60 but for Pr = 100 it is at Re = 80 and for Pr = 250
at Re = 100.

• Second, fixing the Reynolds number to 40 and varying the Prandtl number (see Fig-
ure 16b) we obtain a reduction of the length of the vortices, reaching a symmetrical
solution for Pr = 250. However, for a smaller Prandtl, the solution is asymmetric.
In this aspect, the effect is similar to the Weissenberg number influence: the increase
of Pr gives a more stable solution. In terms of the heat convection forces in relation
with the diffusivity, we can state that the flow pattern is more stable when the heat
convection forces are significantly higher than the heat diffusion.

The temperature contours can be observed in Figure 17 for two different Prandtl
numbers considering in both cases Re = 40, Br = 1 and We = 0.1. Two main comments
can be done about the distribution of this field.

• The temperature contours are significantly different between the two cases. When
the Prandtl numbers is small (Pr = 1), the thermal diffusivity is dominant compared
to the convective term, and despite the inlet temperature being colder than on the
walls, that fact does not affect the temperature distribution. In that case, the
temperature is higher at the center of the duct, due to the effect of the viscous
dissipation.

• However, in the case of Pr = 100, the convective term is now dominant, and therefore
the cold inlet flow is distributed along the whole duct. For this reason, the gradient
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(a) Pr=1

(b) Pr=100

Figure 17: 1:3 expansion. Distribution of temperature in the domain considering We = 0.1,
Br = 1 and Re = 40 for two different Prandtl numbers: Pr = 1 (a) and Pr = 100 (b).

of the temperature is more pronounced in a channel cross-section (varying between
463.27 K to 570 K), and the maximum of temperatures induced by the internal
work of the elastic fluid concentrates in the vortices. That effect is similar to the one
reported in the case Pr = 1 and high Reynolds number (see Figure 11). In that case,
the convective forces were also dominant but induced by a high advection velocity
instead of a high heat capacity in comparison with the conductivity of the fluid flow.

5.2.5 Brinkman number study

Until this point, the effect of the Reynolds, Weissenberg, and Prandtl dimensionless num-
bers has been studied and characterized. In all the previous cases we have considered the
Brinkman number as 1, as it was considered in the reference work [11]. By studying the
influence for the four dimensionless numbers characteristics of the problem, we will see
also how the Brinkman number affects the flow pattern. Note that this number compares
the inertial power with the heat conduction, as explained previously. This dimensionless
number can be understood as a global number that measures the coupling between flow
and temperature. Therefore, following the same procedure as for the other dimensionless
numbers studies, we display two different plots, represented in Figure 18.

• The first one (Figure 18a) represents the comparison of the vortex length for a range
of Reynolds numbers and three Brinkman numbers: 1, 50, and 100. Note that for
clarity, the same color is employed for representing the vortices of the same Brinkman
number; nevertheless, different linestyles have been used to distinguish more clearly
the length of each vortex and compare them. Let us remark that for computations
where the Brinkman number is high, such as Br = 50 or Br = 100, new vortices
emerge for low Reynolds number, also the size of the vortices is larger than in the
case of Br = 1. Regarding the asymmetry, it occurs for a lower Reynolds number,
(Re = 20) for Br = 50 and Br = 100, and also three vortices of different size appear
simultaneously. For low Brinkman number, until Re = 66 the third vortex does
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(a) (b)

Figure 18: 1:3 expansion. Effect of Brinkman number in vortex length, We = 0.1, Pr = 1.
Length of vortices versus the Reynolds number (a), and length of vortices versus the
Brinkman number for Re = 30 (b).

not appear, while for Br = 50, it occurs for approximately Re = 30. The fourth
vortex emerges also for a low Reynolds number (Re = 45 in the case of Br = 100)
in contrast with the low Brinkman number case, in which it is located at Re = 200
(see Figure 11).

• In Figure 18b, the lengths of the vortices are represented, fixing the Re = 40, We =
0.1 and Pr = 1. In this plot, the Brinkman effect can be observed with major clarity.
For a decreasing Br the flow is stabilized until a stable symmetrical state is reached.
In other words, the asymmetry is reduced and it is completely attenuated when
the Brinkman number is 1. Otherwise, as the Brinkman number increases the flux
becomes more unstable.

6 Conclusions

Throughout this work, the effect of the temperature coupling with viscoelastic fluid flows
has been studied and analyzed. First of all, sub-grid scale VMS-stabilization methods have
been proposed to obtain an accurate solution for high elastic flows. In this concern, two
different formulations have been employed: both the standard and the log-conformation
reformulation have been coupled with temperature. The log-conformation reformulation
has been crucial for solving simulations with a high Weissenberg number, for which it is
otherwise impossible to obtain converged solutions. Referring to the coupling, it is carried
out in two different ways: on the one hand, viscoelastic properties are now temperature-
dependent through defined functions. On the other, the energy equation has to consider
the mechanical part of the elastic flow which is transformed into heat.

Regarding the numerical simulations, of the observed effects, two are the most remark-
able: the first one is the increase of temperatures when the Weissenberg number increases,
and the second one is a stress reduction in comparison with isothermal cases. However, in
the particular case of the 1:3 expansion, also a thermal coupling effect to the flow pattern
in the channel is found. In that case, we can observe that the asymmetric solution appears
for lower Reynolds number in comparison with the isothermal case or a higher size of the
vortices that emerge in both sides of the channel is observed. Moreover, the flow pattern
is strongly influenced by the parameters that define the problem and for this reason, that
influence has been explored varying the Prandtl number and the Brinkman number apart
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from the Reynolds and Weissenberg numbers. As a general trend and for the models
considered herein, the flow is more stable for low Re, high We, low Br and high Pr.
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