
Numerical simulation of Fluid-Structure Interaction problems with

viscoelastic fluids using a log-conformation reformulation

Laura Moreno1, Inocencio Castañar2, Ramon Codina2,3,
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1Università degli Studi di Padova, via Trieste 63, 35121 Padova, Italy
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Abstract

In this paper the numerical simulation of the interaction between Oldroyd-B viscoelastic
fluid flows and hyperelastic solids is approached. The algorithm employed is a classical block-
iterative scheme, in which the solid and the fluid mechanics problems are solved sequentially.
A Galerkin finite element approach has been employed for the numerical approximation of
the solid, while the flow equations are approximated using a stabilized finite element method
based on the Variational Multi-Scale approach. In the numerical simulation of the fluid flow
problem, several instabilities are found when the elasticity of the fluid is dominant, and for this
reason a log-conformation reformulation has been employed to solve the more elastic cases. In
this work the log-conformation reformulation stabilized through the VMS method is applied
in order to solve Fluid-Structure Interaction problems involving fluid flows with high elastic
regimes. Several numerical examples are presented and discussed to assess the robustness of the
proposed scheme and its applicability to Fluid-Structure Interaction problems with viscoelastic
fluids in which elasticity is dominant.

Keywords: Fluid-Structure Interaction (FSI); Viscoelastic fluid; Hyperelasticity; Variational Multi-
Scale (VMS) framework; Orthogonal Sub-Grid Scales (OSGS); Log-Conformation Reformulation
(LCR)

1 Introduction

Fluid-Structure Interaction (FSI) problems are nonlinear multi-physics phenomena found in many
fields of engineering and applied sciences, such as aircraft and ship building [1], safe bridge design
or biomedical applications [2]. They model the two-way coupling corresponding to a structure and
the fluid that surrounds it. FSI problems considering Newtonian fluids have been widely studied
and modeled in the past decades [3, 4, 5]. However, in some cases, fluids have a complex rheological
behavior and classical Newtonian fluid models are not suitable.

A very interesting family of non-Newtonian fluids are viscoelastic fluids, which exhibit both
viscous and elastic properties. Their complex internal structure and high-molecular-weight explain
this particular combination of properties [6]. Moreover, viscoelastic fluids have the ability to store
and recover shear-energy [7]. This justifies the necessity of considering an irreducible tensorial
constitutive equation that allows one to describe their elastic nature. Numerically, this yields a
coupled three-field problem where the unknowns are the elastic deviatoric stress, the velocity and
the pressure [8]. In our case, both this problem and the coupled solid mechanics problem will be
approximated using the finite element (FE) method.

Viscoelastic Fluid-Structure Interaction (VFSI) problems are mainly encountered in biomedical
research, such as blood flow in arteries or veins [9, 10, 11, 12]. In addition, viscoelastic behavior
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of fluids is prevalent in a wide range of applications, including food processing, pharmaceuticals or
the chemical industry [13]. One of the most important applications is in microfluidic devices, for
instance memory and control devices [14] and microfluidic rectifiers [15]. However, VFSI problems
in which the elasticity is dominant have not been addressed significantly. This could be explained
due to the fact that computing viscoelastic fluid flows leads to several instabilities in such scenarios
[16]. The dimensionless number known as the Weissenberg number, which is a ratio between elastic
and viscous forces, is high. This number is defined as We = λu/L, where λ is the characteristic
relaxation time of the material, u is the characteristic velocity of the flow, and L is the characteristic
length of the domain. The numerical instability is brought about by the failure to compute the
proper balance of deformation rate and convection. It is a fundamental instability, present in
all constitutive models and standard numerical methods. Nevertheless, it is demonstrated that
constitutive methods can predict other instabilities of mathematical character [17, 18], referred to
as constitutive instabilities.

The difficulties when simulating high Weissenberg numbers flows are commonly known as the
High Weissenberg Number Problem (HWNP) [19]. This is a well-known numerical phenomenon
that causes the iterative non-linearity computations to breakdown for relatively low Weissenberg
numbers. Usually, this manifests as a lack of convergence in the iterative method due to the
hyperbolic nature of the differential constitutive equations. The source of the HWNP has been
recently identified: firstly, the loss of positive-definiteness of the conformation tensor, an internal
variable which should be symmetric positive-definite to be physically admissible [20, 21]; secondly,
the large stress gradients, regions with particular high deformation rate, or near stagnation points,
favor the breakdown of the numerical method, as it is explained by Fattal and Kupferman in
[16, 20]. They describe the cause for this phenomena by the use of inappropriate approximations
to represent the stress tensor, remarking the importance of preserving its positivity.

By following these ideas, a new formulation was proposed in [20], the so-called log-conformation
reformulation (LCR), a representation of the standard equations of viscoelastic fluids, which alle-
viates the instability and linearizes the exponential stress profiles near the stress singularities. The
aim is to treat the exponential growth of the elastic stresses, and therefore allowing to extend the
range of Weissenberg numbers for computing the fluid flow. This technique will be applied in the
present paper for simulating VFSI problems with high elasticity, following the modifications intro-
duced in [22]. Although there are a variety of proposals to deal with the lack of positive-definiteness
in the conformation tensor, the logarithm representation is the unique capable of linearizing the
exponential stress profile.

Due to the difficulties enumerated previously, few works can be found in which the VFSI problem
is solved. For example, in [23] some simulations for a fluid flow in a two-dimensional channel with
a deformating wall are performed. Also, [24] studies the effect of the initial configuration of the
governing equations on flows in a collapsible channel with an upper elastic wall. More recently, in
[25], the interaction between an Oldroyd-B fluid and an elastic structure is explored by applying
an implicit partitioned coupling algorithm.

In this work, we stabilize the approximation of the flow equations using the Variational Multi-
Scale (VMS) method, introduced in [26] for the scalar convection-diffusion-reaction problem and
later extended to the Navier-Stokes problem in [27, 28, 29]. In this last reference, the space of the
sub-grid scales of the formulation was taken as orthogonal to the FE space. This idea was adapted
to the viscoelastic flow problem in [30]. Finally, for the LCR in viscoelastic fluid flow problems
several methods were developed in [22].

The objective of this work is to study the interaction between Oldroyd-B viscoelastic fluids and
hyperelastic solids using numerical schemes in a FE method framework. Moreover, the reformula-
tion of the viscoelastic classical equations will be considered so as to be able to compute converged
solutions for fluids with high elasticity. Therefore, the novelty of the work is the development of a
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method able to compute problems with high elastic regimes for FSI problems through the use of a
stabilized LCR formulation.

This paper is organized as follows. In Section 2 the solid dynamics equations are summarized for
hyperelastic material models. In Section 3 the Navier-Stokes problem in the three-field formulation
for Newtonian and viscoelastic fluids with an Arbitrary Lagrangian-Eulerian (ALE) description
of the fluid equations is presented. Next, in Section 4, the VFSI problem is presented to solve
the coupled problem in a staggered approach. In Section 5 several VFSI numerical examples are
presented and discussed to study the interaction between a viscoelastic fluid and an elastic solid.
Finally, in Section 6 some conclusions are drawn.

2 Solid dynamics problem

2.1 Conservation equations

In this section, the equations of motion of an elastic body under the finite strain assumption are
considered. Let Ωs(t) and Ωs(0) be open, bounded and polyhedral domains of Rd, where d ∈ {2, 3}
is the number of space dimensions, Ωs(0) is the initial configuration of the body and the current
configuration at time t is denoted by Ωs(t). Any point of the body in the reference configuration
is labeled with the reference position vector X. On the other hand, the current position vector x
labels any point of the body at the deformed configuration. We assume the existence of a function
φ which characterizes the motion

φ : Ωs(0) −→ Ωs(t), x = φ(X, t), ∀X ∈ Ωs(0), t ≥ 0.

The boundary of the reference configuration is denoted as Γs(0) := ∂Ωs(0) and Γs(t) := ∂Ωs(t)
represents the boundary of the current configuration. We always assume that the mapping be-
tween both boundaries is defined through the motion, φ (Γs(0)) = Γs(t). We denote as ]0, T [ the
time interval of analysis. We employ the subscript zero for quantities defined in the reference
configuration.

The conservation of linear momentum problem in finite strain theory for an updated Lagrangian
formulation framework reads

ρs
∂2ds
∂t2

−∇ · σs = ρsb in Ωs(t), t ∈]0, T [,

where ρs is the density at the current configuration, ds is the displacement field, σs is the Cauchy
stress tensor and b the field of body accelerations. Mass conservation implies that

ρsJs = ρs,0 in Ωs(t), t ∈]0, T [,

where Js = det F s is the Jacobian, F s = ∂x
∂X is the deformation gradient and ρs,0 is the density

at the initial configuration. With regards to the balance of angular momentum, it implies that the
Cauchy stress tensor must be symmetric.

2.2 Hyperelastic constitutive model

In this work we consider isotropic hyperelastic models (see [31, 32, 33]). These models postulate
the existence of a Helmholtz free-energy function (or strain energy function) Ψ (Cs) such that

Ss = 2
∂Ψ(Cs)

∂Cs
, (1)
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where Ss is the Second Piola-Kirchhoff (PK2) stress tensor and Cs = F T
s F s is the right Cauchy-

Green tensor. Once the PK2 stress tensor Ss is obtained, the Cauchy stress tensor σs can be
computed from the following relation

σs =
1

Js
F sSsF

T
s .

Two different material models are considered in this work.

2.2.1 Saint Venant-Kirchhoff material

The simplest example of a hyperelastic material is the St. Venant–Kirchhoff model, which is defined
by the strain energy function

Ψ(Es) =
1

2
λstr(Es)

2 + µsEs : Es,

where Es =
1
2{Cs − I} is the Green-Lagrange strain tensor, I is the second rank identity tensor

and λs and µs are the Lamé parameters. In the plane stress assumption they are expressed as

λs =
νsEs

1− ν2s
and µs =

Es

2(1 + νs)
,

while in both 3D and in the plane strain assumption they are defined as

λs =
νsEs

(1 + νs)(1− 2νs)
and µs =

Es

2(1 + νs)
.

Here Es is the Young modulus and νs the Poisson ratio. Using Eq. (1), we can obtain the PK2
stress tensor as

Ss = λstr(Es)I + 2µsEs.

2.2.2 Neo-Hookean material

This material model is an extension of Hooke’s law, widely used in linear elasticity, to large defor-
mations. The stored energy function for a compressible Neo-Hookean material is expressed as

Ψ(Cs) =
1

2
λs(ln Js)

2 − µs ln Js +
1

2
µs(tr(Cs)− tr(I)).

Using Eq. (1), the expression for the PK2 stress tensor can be obtained:

Ss = λs ln JsC
−1
s + µs(I −C−1

s ).

2.3 Governing equations

We introduce now the solid dynamics problem in detail. Let Ds = {(x, t)|x ∈ Ωs(t), 0 < t < T} be
the space-time domain where the problem is defined. The problem consists of finding a displacement
ds : Ds −→ Rd such that

ρs (ds)
∂2ds
∂t2

−∇ · σs (ds) = ρs (ds) b in Ωs(t), t ∈]0, T [, (2)

ds = ds,D on Γs,D(t), t ∈]0, T [, (3)

ns · σs = ts,N on Γs,N (t), t ∈]0, T [, (4)
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ds = d
0
s in Ωs(0), t = 0, (5)

∂ds
∂t

=: us = u
0
s in Ωs(0), t = 0. (6)

A set of boundary conditions is considered which can be split into Dirichlet boundary conditions
(3), where the displacement is prescribed, and Neumann boundary conditions (4), where the value
of tractions ts,N is prescribed. Vector ns is the geometric unit outward normal vector on the
boundary of the current configuration Γs(t). The governing equations must be supplied with initial
conditions for both the displacement field (5) and the velocity field (6) in Ωs(0), with d

0
s and u0

s

given.

2.4 Variational form

Let Ω be the domain where a problem needs to be solved. In the case of the solid dynamics problem
we are now considering, Ω = Ωs(t). Given a set ω ⊂ Ω, L2(ω) is the space of square integrable
functions in ω; Hm(ω) is the space of functions whose distributional derivatives of order up to
m ≥ 0 (integer) belong to L2(ω). The space H1

0 (ω) comprises functions in H1(ω) vanishing on ∂ω,
whereas H−1(Ω) is the topological dual of H1

0 (Ω), the duality pairing being ⟨·, ·⟩. The L2 inner
product in ω (for scalars, vectors and tensors) is denoted by (·, ·)ω and the integral over ω of the
product of two general functions is written as ⟨·, ·⟩ω, the subscript being omitted when ω = Ω.

Let E := {e ∈ H1(Ωs(t))
d | e = ds,D on Γs,D(t)} be the functional space where the displacement

solution is well-defined for each fixed time t ∈]0, T [. We denote by E0 functions in H1(Ωs(t))
d which

vanish on the Dirichlet boundary Γs,D(t). Note that these spaces vary in time.
The variational statement of the problem is derived by testing Eq. (2) against arbitrary test

function, e ∈ E0. The weak form of the problem reads: find ds :]0, T [→ E such that initial
conditions are satisfied and〈

e, ρs (ds)
∂2ds
∂t2

〉
+ ⟨∇se,σs (ds)⟩ = ⟨e, ρs (ds) b⟩+ ⟨e, ts,N ⟩Γs,N

(7)

for all e ∈ E0, where ∇se is the symmetrical part of ∇e. As usual, integration by parts has been
used in order to decrease the continuity requirements of the unknown ds.

2.5 Galerkin finite element discretization

We denote by Th a FE partition of the domain Ω of the problem. The diameter of an element
domain K ∈ Th is denoted by hK and the diameter on the FE partition by h = max{hK |K ∈ Th}.
Now we consider the case in which Ω = Ωs(t) is the solid domain. From the FE partition we can
construct conforming FE spaces Eh ⊂ E, as well as the corresponding subspace Eh,0 ⊂ E0 being
made of functions that vanish on the Dirichlet boundary.

The Galerkin discrete version of problem (7) is: find dh,s :]0, T [→ Eh such that〈
eh, ρs (dh,s)

∂2dh,s
∂t2

〉
+ ⟨∇seh,σs (dh,s)⟩ = ⟨eh, ρs (dh,s) b⟩+ ⟨eh, ts,N ⟩Γs,N

,

for all eh ∈ Eh,0, and satisfying the appropriate initial conditions. This system can be linearized
by using a Newton-Raphson scheme (see [33] for further details on linearization methods).

2.6 Time discretization

For the sake of conciseness, in this work only the implicit second order backward differences scheme
(BDF2) is considered. Let us now consider a partition of the time interval [0, T ] into N time
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steps of size δt, assumed to be constant. Given a generic time dependent function at a time step
tn+1 = tn+δt, for n = 0, 1, 2, . . . , the approximation of the second time derivative of second order is
written using information from already computed time instants and fn+1 which is being computed
at this time step according to the following approximation

δ22f

δt2

∣∣∣∣
tn+1

:=
2fn+1 − 5fn + 4fn−1 − fn−2

δt2
=

∂2f

∂t2

∣∣∣∣
tn+1

+O(δt2).

In our problem, we have to approximate the second time derivative of the displacement ∂2ds
∂t2

∣∣∣
tn+1

=:

an+1
s . Therefore

an+1
s =

1

δt2

[
2dn+1

s − 5dns + 4dn−1
s − dn−2

s

]
+O

(
δt2

)
.

Appropriate initializations are required for n = 1, 2.

3 Viscoelastic fluid flow problem

In this section the governing equations that model the viscoelastic fluid flow in both standard and
LCR formulations are presented. The approach followed can be understood as the traditional one
in a broad sense, where an updated Lagrangian formulation is used to deal with the solid mechanics
problem while the fluid problem is solved by means of an ALE formulation to cope with the time
dependency of the fluid domain.

3.1 ALE formulation of the fluid flow equations

Let now Ωf(t) be the domain where the fluid flows, with boundary Γf(t) := ∂Ωf(t) = Γf,N (t) ∪
Γf,D(t), where Dirichlet boundary conditions are prescribed on Γf,D(t) and Neumann conditions on
Γf,N (t). These boundaries may be moving.

Let χt be a family of invertible mappings, which for all t ∈ [0, T ] map a point X ∈ Ωf(0) to a
point x = χt(X) ∈ Ωf(t), with χ0 = I, the identity. If χt is given by the motion of the particles,
the resulting formulation would be Lagrangian, whereas if χt = I for all t, Ωf(t) = Ωf(0) and the
formulation would be Eulerian. Let now t′ ∈ [0, T ], with t′ ≤ t, and consider the mapping

χt,t′ : Ωf(t
′) −→ Ωf(t)

x′ 7→ x = χt ◦ χ−1
t′ (x′).

Let Df = {(x, t)|x ∈ Ωf(t), 0 < t < T} be the space-time domain where the problem is defined.
Given a function f : Df −→ R we define

∂f

∂t

∣∣∣∣
x′
(x, t) :=

∂(f ◦ χt,t′)

∂t
(x′, t), x ∈ Ωf(t), x

′ ∈ Ωf(t
′).

In particular, the domain velocity taking as a reference the coordinates of Ωf(t
′) is given by

udom :=
∂x

∂t

∣∣∣∣
x′
(x, t).

Using the ALE reference, the only modification with respect to the purely Eulerian formulation
is to replace the transport velocity uf of the advective term by uc := uf − udom. If udom = 0 we
would recover a purely Eulerian formulation for the viscoelastic fluid.

When the flow equations are approximated using the FE method, udom needs to be computed.
It is assumed to be given on the boundary Γf(t). To compute the values for the interior of the
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domain, a mesh equation must be solved. The mesh equation we use is proposed in [34]. The method
considers the mesh as a fictitious linear elastic body subjected to prescribed displacements at the
selected moving boundaries. The mechanical properties of each mesh element are appropriately
selected in order to minimize the deformation and the distortion of the mesh elements. The mesh
equation is explicitly shown in Algorithm 1.

3.2 Governing equations

We present now the equations associated to the incompressible viscoelastic fluid flow in Ωf(t),
accounting also for the motion of this domain. Let Df = {(x, t)|x ∈ Ωf(t), 0 < t < T} be the
space-time domain where the flow problem is defined. The problem to be solved is written as
follows: find a velocity uf : Df −→ Rd, a pressure pf : Df −→ R and a deviatoric stress tensor
Tf : Df −→ Rd ⊗ Rd, such that

ρf
∂uf

∂t
+ ρfuc · ∇uf −∇ ·Tf (uf ,σf) +∇pf = f in Ωf(t), t ∈]0, T [, (8)

∇ · uf = 0 in Ωf(t), t ∈]0, T [, (9)

1

2µp
f

σf −∇suf +
λ

2µp
f

(∂σf

∂t
+ uc · ∇σf

−σf · ∇uf − (∇uf)
T · σf

)
= 0 in Ωf(t), t ∈]0, T [, (10)

uf = uf,D on Γf,D(t), t ∈]0, T [, (11)

nf · σf = tf,N on Γf,N (t), t ∈]0, T [, (12)

uf = u
0
f in Ωf(0), t = 0, (13)

σf = σ
0
f in Ωf(0), t = 0, (14)

where ρf denotes the constant density and f is the force field.
In general, T f is defined in terms of a viscous and a viscoelastic contribution as T f (uf ,σf) =

2µs
f∇suf + σf , where σf is the viscoelastic or elastic stress tensor. Note that the effective (or

solvent) viscosity µs
f and the polymeric viscosity µp

f can be written as function of the total viscosity
µ0
f = µs

f + µp
f . Therefore, an additional parameter β ∈ [0, 1] is introduced to define µs

f = βµ0
f

and µp
f = (1 − β)µ0

f . To complete the system which models the viscoelastic fluid, the constitutive
equation for the viscoelastic stress tensor is defined. We employ the Oldroyd-B model (10), where
λ is the relaxation time. Regarding the boundary conditions, uf,D is a prescribed velocity on the
boundary Γf,D(t), tf is a prescribed traction on the boundary Γf,N(t) and nf is the normal to the
boundary of the fluid domain. Finally, u0

f is the prescribed initial velocity, and σ0
f the Cauchy

stress in Ωf(0).
In order to distinguish operators between standard and LCR formulations, we use the subscripts

“std” and “log” from this point on. Also, we define operators Lstd and Dstd, useful in the next
subsections. Let us introduce U = [uf , p,σf ]

T , F std = [f , 0,0]T . Then, we define

Lstd(ûf ;U) :=


−∇ · σf − 2µs

f∇ · (∇suf) + ρf ûc · ∇uf +∇pf
∇ · uf

1

2µp
f

σf −∇suf +
λ

2µp
f

(
ûc · ∇σf − σf · ∇ûf − (∇ûf)

T · σf

)
 ,

where ûc = ûf − udom. The notation ûf is introduced to distinguish the different arguments in
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which the velocity appears. Likewise

Dstd (U) :=


ρf
∂uf

∂t
0

λ

2µp
f

∂σf

∂t

 .

As a consequence, Eqs. (8)–(10) can be rewritten, considering Dt = Dstd, L = Lstd and F = F std,
as

Dt (U) + L(uf ;U) = F . (15)

We will now briefly describe the viscoelastic equations when the LCR is considered. The
log-conformation reformulation basically consists of a change of variables in terms of the matrix-
logarithm of the conformation tensor, in other words, the conformation tensor is replaced by a
new variable ψf = log(τ ). Recall that this method is employed for addressing the incapability of
the standard equations of solving problems with high elasticity. The change of variables allows to
preserve the positive-definiteness property of the conformation tensor and therefore it eliminates the
instability and linearizes the exponential stress profiles near the stress singularities. The complete
development employed is extensively explained in [22]. This reformulation is derived basically
from that change of variables, where the stress tensor is replaced by σf = µp

f λ
−1
0 (τ − I), and

in turn, the conformation tensor τ is written as τ = exp(ψf) in Eqs. (8)–(10). λ0 is defined
as λ0 = max {kλ, λ0,min}, k being a constant and λ0,min a given threshold. Therefore, the new
equations of the LCR approach are expressed as follows:

ρf
∂uf

∂t
−

µp
f

λ0
∇ · exp(ψf)− 2µs

f∇ · (∇suf)

+ρfuc · ∇uf +∇pf = f in Ωf(t), t ∈]0, T [, (16)

∇ · uf = 0 in Ωf(t), t ∈]0, T [, (17)

1

2λ0
(exp(ψf)− I)−∇suf +

λ

2λ0

(
∂ exp(ψf)

∂t

)
+

λ

2λ0
(uc · ∇ exp (ψf)− exp (ψf) · ∇uf)

− λ

2λ0

(
(∇uf)

T · exp (ψf)− 2∇suf

)
= 0 in Ωf(t), t ∈]0, T [, (18)

uf = uf,D on Γf,D(t), t ∈]0, T [, (19)

nf(t) ·
µp
f

λ0
(exp(ψf)− I) = tf(t) on Γf,N (t), t ∈]0, T [, (20)

uf = u
0
f in Ωf(0), t = 0, (21)

ψf = ψ
0
f in Ωf(0), t = 0, (22)

where the unknowns are the velocity, the pressure, and tensor ψf . Note that the last variable de-
pends directly on the stress tensor σf . Analogously to what was done for the standard formulation,
calling U = [uf , pf ,ψf ]

T , F log = [f , 0, 1
2λ0
I]T , we introduce

Llog(ûf ;U) :=


−
µp
f

λ0
∇ · exp(ψf)− 2µs

f∇ · (∇suf) + ρf ûc · ∇uf +∇pf
∇ · uf

1

2λ0
exp(ψf)−∇suf +

λ

2λ0
(ûc · ∇ exp(ψf)

− exp(ψf) · ∇ûf − (∇ûf)
T · exp(ψf) + 2∇suf

)

 ,
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and

Dlog(U) :=


ρf
∂uf

∂t
0

λ

2λ0

∂ exp(ψf)

∂t

.

Eqs. (16)-(18) can be expressed as Eq. (15), where now Dt = Dlog, L = Llog and F = F log.
Similar considerations as for the standard approach can be done for this formulation referring to
the boundary conditions. In this case tensor ψf is not prescribed, similarly to what is done with
the elastic stresses σf in the standard formulation.

3.3 Variational form

Let V = {v ∈ H1(Ωf(t))
d | v = uf,D(t) on Γf,D(t)} be the space where the velocity needs to

be sought for each time t ∈]0, T [, and V0 the corresponding space of test functions, vanishing on
the Dirichlet boundary Γf,D(t). Let Q = L2(Ωf(t)) be the pressure space (up to constants if all
boundary conditions are of Dirichlet type), and Υ ⊂ L2(Ωf(t))

d×d the space for the stresses, with
appropriate regularity. Let also X := V ×Q×Υ and X 0 := V0 ×Q×Υ. The weak form of the
standard viscoelastic problem consists of finding U = [uf , pf ,σf ] :]0, T [−→ X such that the initial
conditions are satisfied and(

ρf
∂uf

∂t
,v

)
+ (σf ,∇sv) + 2(µs

f∇suf ,∇sv) + ⟨ρfuc · ∇uf ,v⟩ − (pf ,∇ · v) = ⟨f ,v⟩+ ⟨tf ,v⟩Γf,N
,

(q,∇ · uf) = 0,

1

2µp
f

(σf ,χ)− (∇suf ,χ) +
λ

2µp
f

(
∂σf

∂t
+ uc · ∇σf − σf · ∇uf − (∇uf)

T · σf ,χ

)
= 0,

for all V = [v, q,χ] ∈ X 0, where it is assumed that f is such that ⟨f ,v⟩ is well defined and likewise
for ⟨tf ,v⟩Γf,N

. In compact form, the problem can be written as: find U :]0, T [−→ X such that

Gstd(U ,V ) +Bstd(uf ;U ,V ) = Lstd(V ), (23)

for all V ∈ X 0, where

Gstd(U ,V ) =

(
ρf
∂uf

∂t
,v

)
+

λ

2η0

(
∂σf

∂t
,χ

)
, (24)

Bstd(ûf ;U ,V ) = 2(µs
f∇suf ,∇sv) + ⟨ρf ûc · ∇uf ,v⟩+ (σf ,∇sv)

− (pf ,∇ · v) + (q,∇ · uf) +
1

2µp
f

(σf ,χ)− (∇suf ,χ)

+
λ

2µp
f

(
ûc · ∇σf − σf · ∇ûf − (∇ûf)

T · σf ,χ
)
, (25)

Lstd(V ) = ⟨f ,v⟩+ ⟨tf ,v⟩Γf,N
. (26)

Let us consider now the LCR. The spaces for the velocity and pressure for the continuous
problems are the ones defined above for the standard formulation. The space for tensor ψf is
now denoted by Ῡ for each fixed time t; it is a subspace of L2(Ωf(t))

d×d of tensor fields with the
appropriate regularity.

The weak form of the problem consists in finding U = [uf , pf ,ψf ] :]0, T [−→ X̄ := V ×Q× Ῡ,
such that the initial conditions are satisfied and the following equations hold(

ρ
∂uf

∂t
,v

)
+

µp
f

λ0
(exp(ψf),∇sv) + 2(µs

f∇suf ,∇sv)
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+⟨ρuc · ∇uf ,v⟩ − (pf ,∇ · v) = ⟨f ,v⟩+ ⟨tf ,v⟩Γf,N
,

(q,∇ · uf) = 0,

1

2λ0
(exp(ψf),χ)− (∇suf ,χ) +

λ

2λ0

(
∂ exp(ψf)

∂t
+ uc · ∇ exp(ψf),χ

)
+

λ

2λ0

(
− exp(ψf) · ∇uf − (∇uf)

T · exp(ψf) + 2∇suf ,χ
)
=

1

2λ0
⟨I,χ⟩,

for all V = [v, q,χ] ∈ X . Again taking into account the new definition of U for this formulation,
the problem can be written as

Glog(U ,V ) +Blog(uf ;U ,V ) = Llog(V ), (27)

where each term is defined as

Glog(U ,V ) =

(
ρ
∂uf

∂t
,v

)
+

λ

2λ0

(
∂ exp(ψf)

∂t
,χ

)
, (28)

Blog(ûf ;U ,V ) =
µp
f

λ0
(exp(ψf),∇sv) + 2(µs

f∇suf ,∇sv) + ⟨ρûc · ∇uf ,v⟩

− (pf ,∇ · v) + (∇ · uf , q) +
1

2λ0
(exp(ψf),χ)− (∇suf ,χ)

+
λ

2λ0

(
ûc · ∇ exp(ψf)− exp(ψf) · ∇ûf − (∇ûf)

T · exp(ψf) + 2∇suf ,χ
)
, (29)

Llog(V ) = ⟨f ,v⟩+ ⟨tf ,v⟩Γf,N
+

1

2λ0
⟨I,χ⟩. (30)

3.4 Galerkin finite element discretization

In this section the Galerkin FE approximation for problems (23) and (27) is described. The same
notation regarding the FE discretization as for the solid problem will be used. In the particular
case of the standard formulation, from Th we may construct conforming FE spaces for the velocity,
the pressure and the elastic stress, Vh ⊂ V , Qh ⊂ Q, Υh ⊂ Υ, respectively. We will consider all
these FE spaces to be made of continuous functions, even though discontinuous approximations
could be used for the pressure and the stress. So, calling X h := Vh ×Qh ×Υh, the Galerkin FE
approximation of the standard problem consists of finding Uh :]0, T [−→ X h, such that

Gstd(Uh,V h) +Bstd(uf,h;Uh,V h) = Lstd(V h),

for all V h = [vh, qh,χh] ∈ X h, and satisfying the appropriate initial conditions.
For the LCR from Th we construct the FE space for the new variable ψ, Ῡh ⊂ Ῡ. Thus, if

X̄ h := Vh ×Qh × Ῡh the Galerkin approximation consists of finding Uh :]0, T [−→ X̄ h, such that

Glog(Uh,V h) +Blog(uf,h;Uh,V h) = Llog(V h),

for all V h = [vh, qh,χh] ∈ X̄ h.
It is well known that the Galerkin approximation is unstable unless convective terms are not

relevant and appropriate compatibility conditions between Qh and Vh and between Vh and Υh are
met (see for example [30]).

3.5 Time discretization

Regarding the time discretization, the BDF2 is also used to approximate the first order time
derivative, based on the following approximation

δ2f

δt

∣∣∣∣
tn+1

:=
3fn+1 − 4fn + fn−1

2δt
=

∂f

∂t

∣∣∣∣
tn+1

+O(δt2).
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By using the approximations of the exponential described in [22], for the LCR we obtain the next
expression using the BDF2 scheme:

∂(exp(ψf))

∂t

∣∣∣∣
tn+1

=
1

2δt

[
3 exp(ψ̂

n+1

f ) ·ψn+1
f + 3 exp(ψ̂

n+1

f )− 3 exp(ψ̂
n+1

f ) · ψ̂n+1

f

− 4 exp(ψn
f ) + exp(ψn−1

f )
]
+O

(
δt2

)
+O

((
δψn+1

)2)
,

where ψ̂
n+1

stands for a previous guess of ψn+1 that depends on the linearization scheme and

δψn+1 = ψn+1 − ψ̂n+1
.

In any case, the stabilized FE method which will be exposed is independent of the time scheme
used.

3.6 VMS stabilization

As it was stated above, the viscoelastic fluid flow problem is stabilized following the VMS frame-
work. VMS methods consist in the splitting of the unknown U in a component Uh, which can
be captured by the FE space, and the remainder Ũ , that will be called sub-grid scale (SGS). The
framework is based on the work by Hughes et al. [26]. In the context of a three field formulation for
flow problems, see [35] and [30]. The SGS needs to be approximated in a simple manner, with the
goal of capturing its effect and yielding a stable formulation. The final number of degrees of freedom
is the same as for the Galerkin method. Different approaches can be followed to approximate the
SGSs and to choose the space where they are defined. In particular, we will present a stabilization
in which the SGSs are time-dependent. That allows to compute problems with anisotropic space-
time discretizations, in which the time step is small in relation with the mesh size ([36, 37, 38]).
Additionally, the stabilization employed for the fluid is not residual-based; it is a term-by-term
approach which neglects terms that do not contribute to stability. It is a non-consistent method,
but it presents optimal convergence regardless the order of the elements. This method turns out to
be more robust than residual-based methods for solving viscoelastic fluid flow problems (for more
details, see [30, 22]).

The problem that we pretend to approximate is Eq. (15) in strong form for both formulations:
the standard one expressed in Eq. (23) and the logarithmic one expressed in Eq. (27).

We shall start with the standard formulation. Observe that Lstd(ûf ; ·) is a linear operator for
a given ûf . Introducing the SGS decomposition and integrating by parts, the method leads to find
Uh :]0, T [−→ X h such that

Gstd(Uh,V h) +Bstd(uf,h;Uh,V h) +
∑
K

⟨Ũ ,L∗(uf,h;V h)⟩K = Lstd(V h), (31)

for all V h ∈ X h, where L∗(uf,h;V h) is the formal adjoint of the operator of Lstd (ûf ; ·), typically
without considering boundary conditions, and Ũ is the SGS, which needs to be approximated and
has components Ũ=[ũ, p̃, σ̃]. To justify Eq. (31), see e.g. [39], and recall that we are considering
all approximations continuous. Also, note that the subgrid scales contribution is neglected for the
non-linear contribution of the velocity uf,h. This simplification is introduced in order to improve
the non-linear convergence of the problem and in our experience has little effect in the final accuracy
of the solution for this kind of problems.

Analogously, for the LCR the method leads to find Uh :]0, T [−→ X̄ h such that

Glog(Uh,V h) +Blog(uf,h;Uh,V h) +
∑
K

⟨Ũ ,L∗(uf,h;V h)⟩K = Llog(V h), (32)
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for all V h ∈ X h. Let us remark that for both formulations (standard and logarithmic) the same
operator L∗ (ûf ; ·) will be employed, following the process described in [22]:

L∗(ûf ;V ) :=


∇ · χ− 2µs

f∇ · (∇sv)− ρf ûc · ∇v −∇q
−∇ · v

1

2µp
f

χ+∇sv − λ

2µp
f

(
ûc · ∇χ+ χ · (∇ûf)

T +∇ûf · χ
)
 .

This is due to the fact that we have not changed variables in the stress test function.
Once operators Dt and L are defined for both formulations, the SGSs can be written in terms

of the FE component as

∂Ũ

∂t
+α−1Ũ = P̃ [F −Dt(Uh)− L(uf,h;Uh)],

where we denote as P̃ the L2 projection onto the space of SGSs. In this work P̃ is taken as the
orthogonal projection to the FE space, denoted as P̃ = P⊥

h , and therefore the Orthogonal SGS
Stabilization (OSGS) method [40] is employed. Let us remark that α is taken as a diagonal matrix
of stabilization parameters, α = diag (α1Id, α2, α3Id×d), with Id the identity on vectors of Rd,
Id×d the identity on second order tensors, and parameters αi, i = 1, 2, 3, being defined as in [30]:

α1 =

[
c1
µ0
f

h21
+ c2

ρf |uf,h|
h2

]−1

,

α2 =
h21
c1α1

,

α3 =

[
c3

1

2µp
f

+ c4

(
λ

2µp
f

|uf,h|
h2

+
λ

µp
f

|∇uf,h|
)]−1

,

where h1 is the characteristic length calculated as the square root of the element area in the two-
dimensional case and the cubic root of the element volume in the three-dimensional case, and h2 is
another characteristic length calculated as the element length in the streamline direction (see [41]
for more details). Term |uf,h| is the Euclidean norm of the velocity and |∇uf,h| is the Frobenius
norm of the velocity gradient. The constants ci, i = 1, .., 4 are algorithmic parameters in the
formulation. The values employed in this paper for the numerical simulations using linear elements
are: c1 = 4.0, c2 = 1.0, c3 = 4.0, c4 = 0.25.

As it was introduced previously, the stabilization approach employed in the computations is
of term-by-term type, denoted from this point as “S-OSGS”, developed and justified in [38]. To
sum up, this stabilization has been proved to be more robust when large stress gradients are
present. Essentially the method allows splitting the SGS associated to the momentum equation
ũ as ũ = ũ1 + ũ2 + ũ3, while the stress SGS remains as σ̃. Therefore, the term-by-term FE
formulation proposed consists of finding Uh = [uf,h, pf,h,σf,h] :]0, T [−→ X h such that

Gstd(Uh,V h) +Bstd(uf,h;Uh,V h) +
∑
K

⟨ũ1,−ρfuf,h · ∇vh⟩K

+
∑
K

⟨ũ2,−∇qh⟩K +
∑
K

⟨ũ3,∇ · χh⟩K +
∑
K

⟨p̃,−∇ · vh⟩K

+
∑
K

〈
σ̃,

1

2µp
f

χh +∇sv − λ

2µp
f

(
uc,h · ∇χh + χh · (∇uf,h)

T +∇uf,h · χh

)〉
K

= Lstd(V h),
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for all V h = [vh, qh,χh] ∈ X h, where Bstd is the bilinear form defined in Eq.(25), and the SGSs
ũ1, ũ2, ũ3, p̃ and σ̃ are the solution of the evolution problems

ρf
∂ũ1

∂t
+ α−1

1 ũ1 = −P⊥
h [ρfuc,h · ∇uf,h], (33)

ρf
∂ũ2

∂t
+ α−1

1 ũ2 = −P⊥
h [∇pf,h], (34)

ρf
∂ũ3

∂t
+ α−1

1 ũ3 = P⊥
h [∇ · σf,h], (35)

α−1
2 p̃ = −P⊥

h [∇ · uf,h], (36)

λ

2µp
f

∂σ̃

∂t
+ α−1

3 σ̃ =P⊥
h

[
− 1

2µp
f

σf,h +∇suf,h

]
+P⊥

h

[
− λ

2µp
f

(
∂σf,h

∂t
+ uc,h · ∇σf,h − σf,h · ∇uf,h − (∇uf,h)

T · σf,h

)]
. (37)

In this method, there are three terms that stabilise the momentum equation, the first one giving
control on the convective term (33), the second term on the pressure gradient (34) and the third
one on the divergence of the viscoelastic stress (35). This term-by-term stabilization point of view
is in fact previous to the OSGS method, based on the approximation of the sub-grid scales. It is
proposed in the reference [27] and analyzed in [29].

Recall that P⊥
h denotes the orthogonal projection to the FE space. Although this method is not

residual-based for the momentum equation (as justified in [38]), and therefore it is not consistent
in the sense used in the FE context, it has an optimal consistency error regardless the order of the
elements.

Finally, the term-by-term stabilization proposed for the LCR approach consists of finding Uh =
[uf,h, pf,h,ψf,h] :]0, T [−→ X̄ h such that

Glog(Uh,V h) +Blog(uf,h;Uh,V h) +
∑
K

⟨ũ1,−ρfuf,h · ∇vh⟩K

+
∑
K

⟨ũ2,−∇qh⟩K +
∑
K

⟨ũ3,∇ · χh⟩K +
∑
K

⟨p̃,−∇ · vh⟩K

+
∑
K

〈
σ̃,

1

2µp
f

χh +∇sv − λ

2µp
f

(
uc,h · ∇χh + χh · (∇uf,h)

T +∇uf,h · χh

)〉
K

= Llog(V h),

for all V h = [vh, qh,χh] ∈ X h, where Blog is the bilinear form defined in Eq. (29), the SGSs ũ3

and σ̃ are now defined as the solution of the equations

ρ
∂ũ3

∂t
+ α−1

1 ũ3 = P⊥
h

[
µp
f

λ0
∇ · exp(ψf,h)

]
.

λ

2µp
f

∂σ̃

∂t
+ α−1

3 σ̃ = P̃

[
− 1

2λ0
exp(ψh) +∇suf,h

]
+ P̃

[
− λ

2λ0

(
∂ exp(ψf,h)

∂t
+ uc,h · ∇ exp(ψf,h)

)]
+ P̃

[
− λ

2λ0

(
− exp(ψf,h) · ∇uf,h − (∇uf,h)

T · exp(ψf,h) + 2∇suf,h

)]
,

and the SGSs ũ1, ũ2, and p̃ are solutions of Eqs. (33), (34), (36), respectively.
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4 Fluid-Structure Interaction

4.1 The FSI problem

Let Ω(t) be the whole domain of the FSI problem, formed by a fluid sub-domain Ωf(t) and a solid
one Ωs(t). These two sub-domains do not overlap, so that Ω̄(t) = Ωf(t) ∪ Ωs(t) and Ω̊f(t)∩Ω̊s(t) = ∅,
as shown in Fig. 1. The sub-domains have their own boundaries Γf(t) and Γs(t), and the interface
between the two sub-domains is Γi(t). Its unit normal with respect to the spatial configuration is
denoted ni, pointing from the fluid side to the solid one.

Figure 1: Sketch of a general FSI problem.

4.2 Governing equations

Borrowing the notation developed in previous sections, we can expand it to account for a moving
domain and to take into account the interaction between sub-domains. The FSI problem can
be stated as: find a displacement ds in the solid problem, an associated velocity us = ∂ds

∂t , and
U = [uf , pf ,σf ] for the standard formulation of the flow problem, or U = [uf , pf ,ψf ] for the LCR
one, such that

ρs (ds)
∂2ds
∂t2

−∇ · σs (ds) = ρs (ds) b in Ωs(t), t ∈]0, T [,

ds = ds,D on Γs,D(t), t ∈]0, T [,
ns · σs = ts,N on Γs,N (t), t ∈]0, T [,

ds = d
0
s in Ωs(0), t = 0,

us = u
0
s in Ωs(0), t = 0,

Dt (U) + L(uf ;U) = F in Ωf(t), t ∈]0, T [,
uf = uf,D on Γf,D(t), t ∈]0, T [,

nf · σf = tf,N on Γf,N (t), t ∈]0, T [,
uf = u

0
f in Ωf(0), t = 0,

σf = σ
0
f in Ωf(0), t = 0,

us = uf on Γi(t), t ∈]0, T [,
ts + tf = 0, on Γi(t), t ∈]0, T [,

where Dt,L and F are identified depending upon the kind of formulation applied for the fluid, as
seen in Section 3, and ts = −ni · σs. The last equations are known as the transmission conditions
between sub-domains. In order to ensure accurate and stable dynamic simulations of FSI problems,
dynamic and kinematic continuity must be guaranteed on the interaction interface. They are in
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charge of imposing same velocities and tractions on the interface boundary Γi(t). Let us recall that
tf is computed according with the kind of formulation selected for the fluid as

tf = ni · σf

for the standard formulation and

tf = ni ·
ηp
λ0

(exp(ψf)− I)

for the LCR.
The problem described has been written in the monolithic version, in which all unknowns are

solved at once, in a fully coupled way. Coupling conditions are treated implicitly.

4.3 Block iterative scheme

Rather than solving the monolithic version of the problem, in this work a block-iterative coupling
is considered, in which the solid and the fluid mechanics problems are solved sequentially. Strong
coupling is considered; this is achieved by block-iterations that converge to the solution of the
monolithic problem. This is essential to guarantee correct interface coupling as mesh displacements
and velocities should be, up to a certain tolerance, equal, and continuity of tractions is also required.
This coupling is of Dirichlet-Neumann type: the solid is solved with the loads computed from the
fluid in a given iteration and then the fluid is computed with the velocities on the interface obtained
from the solid (see below).

Dynamic sub-relaxation is an efficient way to minimize the amount of sub-iterations necessary
to achieve convergence. We have implemented an Aitken relaxation scheme, in particular Aitken
∆2, detailed in [3]. Within each time step, let us denote by a superscript k the k-th block-iteration
of any variable. For clarity, let us omit the superscript with the time step counter. Suppose that
from values at the k-th iteration, the solid is solved, obtaining the boundary velocities uk+1

Γi,s
. Then,

the fluid is solved from the boundary velocities uk+1
Γi

computed as

uk+1
Γi

= uk
Γi
+ ωk+1rk+1

Γi
,

where

rk+1
Γi

:= uk+1
Γi,s
− uk

Γi
, ωk+1 = −ωk

(rkΓi
)T (rk+1

Γi
− rkΓi

)

|rk+1
Γi
− rkΓi

|2
.

The algorithm is initialized taking a constant relaxation parameter (usually 0.1) in the two first
coupling iterations.

Remark 4.1 We have just considered a classical Aitken-accelerated partitioned approach to deal
with the VFSI problem. Several new techniques have been developed over the last years to improve
transmission conditions, such as quasi-Newton methods [42, 43], domain decomposition techniques
[44] or weak boundary transmission conditions [45], which could also be applied to the current
problem.

Remark 4.2 In some works, it is recommended to apply relaxation of the displacement field instead
of the velocity one. From our experience, the latter option is more convenient. If only the velocity
field is relaxed, the interface between sub-domains from which the fluid solver computes tractions
matches perfectly with the interface displacements.

Using the Dirichlet-Neumann iteration-by-subdomain coupling approach described earlier, the
coupling algorithm to solve the problem is given in Algorithm 1.
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Algorithm 1 FSI algorithm
n = 0; loop over the number of time steps.

n← n+ 1.
k = 0; iterate until convergence.

k ← k + 1 (block iteration counter omitted in the following).
• Solve the equations for the solid, taking into account the tractions coming from the fluid

problem tf . At time tn, omitting the superscript for the unknowns, these equations are:

ρs (ds)
δ22ds
δt2
−∇ · σs (ds) = ρs (ds) b in Ωs(t

n),

ds = ds,D on Γs,D(tn),

ns · σs = ts,N on Γs,N (tn),

ni · σs = tf on Γi(t
n).

• Compute relaxed velocities on the interface boundary uΓi
with an Aitken relaxation scheme

from the solid velocities uΓi,s =
δ2ds

δt |Γi
.

• Compute the domain velocity in the fluid by solving the problem (see [34]):

−∇ · {C (Edom (x) , νdom) : ∇sudom} = 0 in Ωf(t
n),

udom = uΓi
on Γi(t

n),

udom = 0 on Γf(t
n) \ Γi(t

n),

where C is the Constitutive 4th order tensor in linear elasticity, Edom (x) is the Young Modulus
of the mesh computed at each node according to [34] and νdom = 0.065 is the Poisson coefficient
of the mesh.

• Solve the ALE equations for the fluid, taking into account the mesh velocity udom and
using the interface velocity uΓi . If D̂t is a BDF2 approximation to Dt, the equations to be solved
at tn are:

D̂t (U) + L(uf ;U) = F in Ωf(t
n),

uf = uf,D on Γf,D(tn),

nf · σf = tf,N on Γf,N (tn),

uf = uΓi , on Γi(t
n).

• Check convergence and update unknowns. When transmission conditions are satisfied on
the interface boundary up to a tolerance, the coupling iterative loop ends.

End block-iterative loop.
End loop over the number of time steps.
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5 Numerical Examples

In this section, three numerical examples are presented to assess the performance of the proposed
FSI solution strategy. In the first one, a flow through a channel with a flexible wall is considered
to study the stationary solution. The main idea is to analyze the differences between the standard
formulation and the logarithmic one when increasing the Weissenberg number of the problem.
Next, so as to examine the effect of the viscosity, the well-known Turek’s test [46] is presented. In
this case, the behavior of a laminar channel flow around an elastic object is studied when elasticity
becomes dominant in the fluid. To end up, the influence of arterial mechanical properties in the
blood flow in an aneurysm is analyzed. In particular the blood is modeled as a viscoelastic fluid.

Concerning the iterative scheme, for all examples a maximum of 15 iterations are set for both
the fluid and the solid sub-problems, whose numerical relative tolerance in the L2 norm is 10−5.
Also, for the transmission conditions on the interface boundary (using again the L2 norm), the
relative tolerance is 10−3. In order to solve the monolithic system of linear equations for each
sub-problem, we use the Biconjugate Gradients solver, BiCGstab [47], which is implemented in the
PETSc parallel solver library [48].

It is important to mention that mesh convergence results and their corresponding error es-
timation for the fluid side and the structural side are already performed in previous works. In
the case of the standard three-field formulation for the viscoelastic fluid it can be found in [30].
With respect to the LCR it is performed in detail in [22]. On the structural side, the classical
displacement-based formulation for finite strain theory is considered. This formulation is widely
used and its error analysis results are presented, for example, in [33].

5.1 Flow through a channel with a flexible wall

This first problem is a simplified test case of a flow in an elastic tube. This test is the standard
one used by many authors as a reference benchmark for both Newtonian (for example [49, 50])
and shear-dependent non-Newtonian fluids (see [51, 52]). Moreover, more recently, the works of
Chakraborty et al. [53] and Chen et al. [25] also consider viscoelastic fluids to explore new possible
effects. Essentially, the model consists of a steady flow in a channel where a part of the upper
wall is replaced by an elastic plate. To sum up, firstly a study considering a Newtonian fluid will
be performed, and later the effect of the viscoelasticity will be investigated, comparing the results
with those that can be found in the literature. The benefits of the LCR approach proposed here
will be highlighted.

5.1.1 Set up

The problem is defined according to the parameters proposed in [25, 54]. The scheme of the
domain can be observed in Fig. 2. Regarding the channel measures, the rigid channel has height
D = 0.01 m. The flexible wall has a length of 5D, located at 5D from the channel entrance. The
length of the channel downstream of the flexible wall is 30D. For the computations, the flexible
plate thickness d varies between 0.01D and 0.1D.

Regarding the properties of the fluid, the density is ρf = 1000 kg/m3 and the viscosity is η =
0.001 Pa · s. For the elastic plate the properties are as follows: an initial density ρs,0 = 1200 kg/m3,
a Young’s modulus Es = 35.9 kPa and a Poisson’s ratio νs = 0.45. A Saint Venant-Kirchhoff
material law is employed (see Subsection 2.2.1 for a detailed description) and the plane strain
assumption is considered.

Concerning the boundary conditions, in the inlet boundary of the fluid domain Γin, a steady
Poiseuille flow with average velocity ūin = 0.03 m/s is assumed; on the walls Γwall no-slip boundary
conditions are imposed, and in the outlet Γout the pressure is set to pout = 0 Pa. A rectangular
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Figure 2: Flow through a channel with a flexible wall. Geometry.

plate is considered as the solid domain, where an external pressure pext = 1.755 Pa is distributed
on the upper edge and it is clamped in both the left and the right sides. Therefore, the considered
Reynolds number is Re = ρf ūinD/η = 300, where ūin is the average inlet velocity in the channel
direction.

The domains are discretized by using bilinear structured elements (Q1). Two meshes have been
used for this example, whose numbers of elements are summarized in Table 1. The meshes M1f
and M1s are employed for the Newtonian fluid flow study, and finer meshes M2f and M2s are used
for studying all the viscoelastic cases.

Fluid mesh Elements Solid mesh Elements

M1f 3 000 M1s 600
M2f 10 500 M2s 1 500

Table 1: Flow through a channel with a flexible wall. Main characteristics of the computational
meshes.

5.1.2 FSI problem using a Newtonian fluid

Firstly, the validation considering a Newtonian regime is performed. For that, six different thickness
have been considered to see the effect on the plate deformation. The distribution of velocities,
pressures and stresses in the channel can be seen in Fig. 3. Note that the solution fields are similar
for all six cases and, for this reason only one case is shown here. In these pictures, only the part
of the domain where the plate is located has been plotted. The maximum velocity is reached in
the narrowing of the channel produced by the deformed wall. Also, a peak of pressure and stress
is observed in this area as a consequence of the local reduction of the channel width.

The vertical displacement of the flexible plate for different thicknesses, from d = 0.1D to
d = 0.01D, can be observed in Fig. 4. As expected, the thickest plate is the less deformed one. The
effect reported is that the slenderer the plate is, the higher the deformation of the plate becomes.
Moreover, as the thickness increases, the lowest point of the wall moves upwards gradually due to
the increment of forces exerted by the fluid. These results are in agreement with those reported in
[24] and [25].
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Figure 3: Flow through a channel with a flexible wall. Distribution of the velocity field (top),
pressure (middle) and the stresses (bottom) in the fluid domain around the plate location for the
plate thickness d = 0.01D. Velocities and stresses are plotted using their Euclidean norm.

Figure 4: Flow through a channel with a flexible wall. Comparison of the vertical displacement of
the plate for different thicknesses d using a Newtonian fluid.
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5.1.3 FSI problem using a viscoelastic fluid

Once the Newtonian fluids have been tested, the study of the deformation for the thinnest plate (of
thickness d = 0.01D) is carried out, but now varying the elasticity of the fluid. In other words, the
problem using a viscoelastic fluid for several Weissenberg numbers is computed, so as to study the
evolution of the flow when elasticity becomes dominant. The physical parameters have been set as
in the previous section, with the exception of the relaxation time of the fluid and the β parameter,
that now is set to 0.5.

(a) (b)

Figure 5: Flow through a channel with a flexible wall. Comparison of the deformation of the plate
with thickness d = 0.01D for several We numbers.

Firstly, the deformation changes in the plate will be explored when the Weissenberg number
increases, by using both fluid formulations (standard and LCR). This study is plotted in Fig. 5,
where the deformation of the plate in each case is drawn from We = 0 to We = 1.2, which
corresponds to relaxation times from λ = 0 s to λ = 0.4 s, respectively. Note that the results
with We = 0 correspond exactly with the Newtonian fluid behavior. The classical Navier-Stokes
equations written in a three-field formulation setting are automatically recovered.

It is interesting to highlight the phenomena produced when the elasticity becomes dominant.
An attenuation of the deformation in the plate is produced. This effect is also reported in [25], and
it is explained by the presence of a higher elasticity in the fluid: when elasticity increases, stresses
do so significantly.

So as to clarify this physical effect, Table 2 shows a summary of the fluid forces on the solid
and the momentum with respect to the center of gravity of the flexible wall. The external pressure
pext acting over the plate causes a vertical force equal to 0.8775 · 10−1 N. As it can be observed
in Table 2, the resulting vertical fluid force increases as We increases. That force is acting in the
opposite direction to the one coming from the external pressure, reducing the deflection of the
plate. It is important to mention that a small movement upwards is also appreciated in the lowest
point of the wall in Fig. 5. Clearly it is caused by the reduction of momentum at the center of
gravity of the membrane.

Both formulations (standard and LCR) show similar results for the plate displacement, although
slight differences can be reported for We up to 0.3. These are explained by the different treatment
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We x-force [10−2 N] y-force [10−1 N] Momentum [10−2 N·m]

0.0 0.6225 0.4018 −0.3704
0.15 0.6056 0.4130 −0.3545
0.3 0.6098 0.4399 −0.3389
0.6 0.5734 0.4554 −0.3344
0.9 0.5416 0.4754 −0.3155
1.2 0.5534 0.5186 −0.3085

Table 2: Flow through a channel with a flexible wall. Horizontal and vertical forces and momentum
with respect to the solid center of gravity.

of the stresses. However, when the element size is small enough, the solution converges exactly to
the same solution, independently of the employed formulation.

Furthermore, we also study the distribution of pressure and first component of stress in the
flexible wall for each computed case, plotted in Fig. 6. We have displayed the component σxx
instead of the others because it is the most characteristic component of the stress tensor in this
location. As expected, both solutions become higher when the elasticity of the fluid increases.

First of all, let us remark that for the highest elastic case computed (We = 1.2), results do not
show a smooth solution for stresses when the standard formulation is employed, probably due to a
lack of mesh resolution in this location; this can be clearly seen in Fig. 6a. This non-smoothness is
also reported in [25], in which the smooth solution is reached using finer meshes. Note that this area
presents large stress gradients, regions with particularly high deformation rate, and therefore this
location is highly sensitive to the instability caused by the HWNP. However, through the application
of the LCR approach, able to deal with the instability, a regular solution can be obtained, as it can
be observed in Fig. 6b.

For We numbers up to 0.3, the LCR is able to capture higher values for the peaks of stresses than
the standard formulation; concerning the pressure field, a bad solution is obtained for We = 1.2 for
the standard formulation, as it can be observed in Fig. 6c. Despite the fact of obtaining a smooth
solution, it should be higher than the one obtained for We = 0.9. A correct solution is obtained if
the LCR for the viscoelastic fluid is used, as it is shown in Fig. 6d.

All the cases reported until We = 1.2 have a converged solution using both formulations.
It is important to remark that the employed formulation does not affect significantly the final
displacement of the plate, even for the fluid flow with high Weissenberg number, as it can be seen
in Fig. 5. However, the iterative scheme suffers a breakdown for the standard formulation when
We > 1.2. This breakdown seems to be caused by the incapability of the formulation of capturing
suitably both the stress and the pressure fields for the chosen mesh with We = 1.2 (see Fig. 6).

5.2 Turek’s test

In this case, we study the FSI between an hyperelastic structure and a laminar flow. This benchmark
is used by many authors as a reference test to check their implementations of the FSI problem
[46]. The configuration consists of a laminar channel flow around an elastic object which results
in self-induced oscillations of the structure. Firstly, a study considering a Newtonian fluid will
be performed and compared with the literature, and then the effect of the viscoelasticity will be
investigated.

5.2.1 Setup

The geometry of the problem is displayed in Fig. 7. The rigid channel has height H = 0.41 m
and length L = 2.5 m. The circle center is positioned at point C = (0.2, 0.2) m (measured from
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(a) (b)

(c) (d)

Figure 6: Flow through a channel with a flexible wall. Comparison of the first component of stress
and pressure in the plate with thickness d = 0.01D using the standard and the LCR formulation.

the left bottom corner of the channel) and its radius is r = 0.05 m. The structure bar has length
l = 0.35 m and height h = 0.02 m. The right bottom corner is positioned at (0.6, 0.19) m, and the
left end is fully attached to the fixed cylinder.

With regards to boundary conditions, a parabolic profile is prescribed at the left channel inflow,
given by

ūf(0, y) = 1.5 ūin
y(H − y)(

H
2

)2 , (38)

such that the mean inflow velocity is ūin and the maximum of the inflow velocity profile is 1.5ūin.
A smooth increase of the velocity profile in time is prescribed, given by

uf(0, y, t) =

{
ūf(0, y)

1−cos π
2
t

2 t < 2.0 s

uf(0, y) otherwise
. (39)
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Figure 7: Turek’s test. Geometry.

The outflow condition is considered stress free. Finally, a no-slip condition is prescribed for the
fluid on the other boundary parts. Concerning the boundary conditions of the structure, fixed null
displacement is considered in the left edge.

Two FSI tests are performed: on the one hand, FSI1, which results in a stationary solution; on
the other hand, FSI2, which has a periodic solution. Table 3 shows the parameter settings for each
FSI case. Note that here the viscosity of the fluid is the kinematic one.

Parameter FSI1 FSI2

ρs,0 [103 kg
m3 ] 1 10

νs [-] 0.4 0.4

Es [10
6 kg
ms2

] 1.4 1.4

ρf [10
3 kg
m3 ] 1 1

νf [10
−3m2

s ] 1 1
ūin [ms ] 0.2 1
Re [-] 20 100

Table 3: Turek’s test. Parameter settings for the FSI1 and FSI2 cases.

The domains are discretized using P1 (linear) elements for the fluid domain and Q1 (bilinear)
elements for the solid one. Regarding the distribution of the elements, the mesh is finer around
the cylinder and the bar, while downstream the mesh is coarser, as it can be observed in Fig. 8. In
total, the fluid mesh is formed by 25 000 unstructured elements, and the solid mesh by 10 000 (20
× 500) structured elements.

5.2.2 FSI problem using a Newtonian fluid

The aim of this section is to compare our results with the ones coming from the benchmark in [46] by
using a Newtonian fluid and a Saint Venant-Kirchhoff solid material. First of all, the stationary case
FSI1 is validated with reference [46] in Table 4, which includes displacements, drag and lift forces.
The results completely agree with the reference ones, as it can be observed. For these computations
the LCR formulation have been employed, but note that the solution would be exactly the same
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(a) Mesh of the fluid domain

(b) Zoom around the cylinder and bar and mesh of the solid domain

Figure 8: Turek’s test. Mesh domain.

for the standard one due to for We = 0 (and therefore λ = 0) we recover exactly the Navier Stokes
equations written in a three-field setting.

x-disp of A [10−4 m] y-disp of A[10−3 m] drag [N] lift [N]

Current paper 0.2241 0.8202 14.263 0.7657
Reference [46] 0.2270 0.8209 14.295 0.7638

Table 4: Turek’s test. Displacement at point A and forces exerted by the fluid on the whole
submerged body (cylinder and beam) for FSI1 benchmark.

Moreover, the dynamic case is also tested, namely FSI2. Fig. 9 shows the solution for three
different times. The bar displacements observed and the lift and drag obtained are also in agreement
with the reference paper. We can conclude that the FSI algorithm has been suitably checked.

Finally, a three-field based formulation (with fluid unknowns velocity, pressure and stresses)
and a two-field based one (where the unknowns are velocity and pressure) are compared. It is
done to stand out the principal differences and to explain why the three-field one is better in terms
of accuracy. The differences between stresses are highlighted in both cases in Fig. 10: while in
the two-field algorithm the stresses are constant over elements, in the three-field formulations the
stresses are linear. The accuracy of the fluid traction computed and transmitted to the solid in
their interface is enhanced by using the three-field formulation. The differences between stresses
are highlighted in both cases in Fig. 10: while in the two-field algorithm the stresses are computed
from the velocity gradient, and therefore constant over elements for linear FE, in the three-field
formulations the stresses are linear. The accuracy of the fluid traction computed and transmitted
to the solid in their interface is enhanced by using the three-field formulation due to the increase of
accuracy of the stresses. See [55] for further details between the comparison of both formulations
with regards to enhanced accuracy of stresses.
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(a) t = 34.0

(b) t = 34.1

(c) t = 34.3

Figure 9: Turek’s test. Plot of the velocity norm for test FSI2 at different times.

5.2.3 FSI problem using a viscoelastic fluid flow

In this subsection, the same problem is developed using a viscoelastic fluid and a Neo-Hookean
model for the solid. First of all, numerical results are presented for the FSI1 case. Table 5 shows
the displacement of the end of the beam structure at point A and the resulting forces exerted by
the fluid on the whole submerged body. In this case the effect of viscoelasticity can be clearly
analyzed. When the elasticity of the fluid increases, the vertical force exerted by the fluid (lift)
also becomes higher. This phenomenon is in accordance with the study done in [22] in the classic
flow over a cylinder case. One can conclude that higher vertical forces on the FSI boundary will
cause the beam to show higher values of deformation.

We x-disp of A [10−4 m] y-disp of A [10−3 m] drag [N] lift [N]

0.0 0.2241 0.8202 14.263 0.7657
0.2 0.2107 0.9384 14.703 0.7748
0.4 0.1959 1.0650 15.250 0.7800
0.6 0.1765 1.2020 16.089 0.7873
0.8 0.1572 1.3100 17.038 0.7774
1.0 0.1435 1.3440 18.003 0.7396
1.2 0.1386 1.2520 19.054 0.6669

Table 5: Turek’s test. Displacement at point A and forces exerted by the fluid on the beam for
case FSI1.
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(a) two-field formulation (b) three-field formulation

Figure 10: Turek’s test. Comparison of distribution of the stress field between the two-field formu-
lation and the three-field one for the FSI2 test.

For the FSI2 problem, the evolution in time for displacements, lift and drag is computed for
several We numbers. The maximum We regime that the algorithm is able to simulate using this
mesh is We = 0.4. Let us remark that the “characteristic” We can vary depending on the problem
configuration or the Reynolds number of the problem. In this case, the Reynolds number is higher
than for the FSI1 problem, and therefore the maximum We for which the algorithm is able to
reproduce well-defined solutions is smaller than for case FSI1. In Fig. 11 the tracking of the
solution of point A along a second is performed to compare the different fluid flows. Note that the
phases between plot cases have been conveniently adjusted in order to ease the comparisons. In the
y-displacements, minimum and maximum peaks have slight variations. While for low Weissenberg
numbers, higher than zero, a reduction of y-displacement is reported, when it grows up to We = 0.3
or We = 0.4 the displacements increase. This effect is connected with lift and drag force changes,
which show a similar effect (see Fig. 11).

5.3 Abdominal aortic aneurysms

As a final example, an abdominal aortic aneurysm is analyzed. The study of blood flow is important
to understand the mechanisms behind the onset and progression of atherosclerosis [56, 57]. Many
studies related to abdominal aortic aneurysms consider the blood as a purely viscous fluid with
constant viscosity, that is, a Newtonian fluid. In [58, 59] it is explained that blood can be modeled as
an homogeneous shear-thinning and viscoelastic fluid characterized by the Oldroyd-B model. This
is justified due to blood exhibiting non-Newtonian characteristics, mainly due to shear thinning
viscosity and viscoelasticity related to stress relaxation and normal stress effects. Moreover, in the
case of small arteries, the microstructure and rheological behavior of blood should not be neglected
since the dimension of the blood particles is of the same order as that of the vessels. The parameters
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Figure 11: Turek’s test. Results for FSI2.

we used for modeling the blood flow are taken from [60].
In [60] a two-dimensional numerical study is performed in which the blood is modeled as a

viscoelastic fluid, in which the Oldroyd-B constitutive model is used to represent the viscoelastic
properties of the blood. Results show that at higher volumetric flow rates, which correspond to
low shear rate situations, vortices are observed. The relative error with respect to the Newtonian
flow model in these cases is of order 40 % and cannot be neglected. Furthermore, in [61] the
influence of arterial mechanical properties on carotid blood flow is shown by comparing models
with rigid and elastic walls. The conclusion that can be quickly drawn from the study is that the
reciprocal influence of both fluid and solid (blood and artery) must be taken into account, so as
not to overestimate the effect of rigid walls in the blood flow. In this example, we carry on a VFSI
study to approximate the behavior of blood flow as a viscoelastic flow and to consider the artery
as an hyperelastic Neo-Hookean material.

5.3.1 Setup

The geometry of the problem is displayed in Fig. 12. In this picture, one can observe the geometry
of a channel with one single aneurysm. Particularly, in Fig. 12a the fluid arterial domain is plotted
and in Fig. 12b the solid domain, where a membrane thickness of d = 0.001 m is considered,
following the one described for the carotid case in [61]. Finally, the fully coupled model is drawn
in Fig. 12c, where a transversal cut is done to indicate the lengths adopted for the 3D domain
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generation. In our case, D = 0.008 m is the diameter of the artery at the inlet and outlet sections,
R = D/2 is the aneurysm ratio, LT = 7.5D is the domain total length, and the other dimensions
are set as L1 = 2.5D and L2 = 5D. Also D1 = 2D is the maximum diameter adopted in the
domain for the artery. Moreover, the geometry has been constructed using the curve

y =

(
D1 −D

2

)[
1 + sin

(
2π(x− L1)

L2
− π

2

)]
+

D

2
L1 ≤ x ≤ L2, (40)

which has been revolutionized over the longitudinal axis (x).

(a) Fluid domain (b) Solid domain

(c) Full domain

Figure 12: Aneurysm problem. Geometry.

Once the geometry has been defined, the fluid and solid properties will be described. First of
all, the blood in the artery is considered as a Newtonian fluid, and later as a viscoelastic one. For
the Newtonian cases performed, the blood density is ρf = 1060 kg/m3 and the dynamic viscosity
µf = 3.5 · 10−3 Pa · s; for the viscoelastic fluid model, the properties are µs

f = 3.19 · 10−3 Pa · s
for the solvent viscosity and µp

f = 4 · 10−4 Pa · s for the polymeric viscosity. In other words, the
total viscosity is set to µ0

f = 3.49 Pa · s and β = 0.88. Concerning the relaxation time, it is
set to λ = 0.06 s. Secondly, for the solid domain, which models the vessel wall deformation, an
hyperelastic Neo-Hookean law is considered. Regarding the mechanical properties, the density is
ρs,0 = 1120 kg/m3, the Poisson ratio is νs = 0.45 and elastic modulus is Es = 1.106 · 106 Pa.

For the fluid domain, a no-slip boundary condition is imposed over the walls and a fully devel-
oped flow is assumed at the artery inlet, following the expression

ux(0, y, z, t) = umax

(
1− (z2 + y2)

R2

)
, uy(0, y, z, t) = 0, uz(0, y, z, t) = 0.

Note that ux is the main direction of the flow in the artery; the average velocity at the inlet is
ū = 0.05968 m/s taking umax = 0.11936 m/s as the maximum velocity reached at the inlet. The
flow rate is Q = 3 · 10−6 m3/s. This is the maximum flow rate adopted by the reference paper
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[60]. While in the Newtonian regime stresses are considered free in the inlet, for the viscoelastic
fluid flow case those have been fixed associated to the parabolic velocity profile. The artery exit is
considered stress free, but to avoid fluid recirculations in the exit only the first component of the
velocity is set to be free. Lastly, note that the Reynolds number associated to this regime is 139.7
and, for the viscoelastic fluid flow, the We number is 0.447.

Relative to the solid model, the boundaries adjacent to the inlet and outlet are fixed. On the
remaining boundaries of the solid, a stress free condition is considered, which basically allows the
solid to deform in any direction.

Concerning the generated mesh, it is unstructured and the domain is discretized using 582 804
tetrahedral FEs for the fluid domain, while the solid one has 286 597 hexahedral elements. The
minimum element size, found on the walls of the fluid domain and in the solid domain, is about
hmin = 0.00025. The time step size is set to δt = 0.0025. SI units are used throughout.

5.3.2 Results

As mentioned earlier, a similar study is performed in [60] for a 2D case to highlight the importance
of choosing a viscoelastic fluid for modeling the human blood; however, we also incorporate the
interaction with a solid membrane, as suggested in [61]. Its effect is quantified in the following.

Fig. 13 shows the fluid flow streamlines. Specifically, Fig. 13a plots the streamlines in the full
3D model. Here, the vortices of the flow, which are located close to the aneurysm walls, can be
clearly observed. For a better comprehension of these vortices, both Fig. 13b (Newtonian case) and
Fig. 13c (viscoelastic case) are displayed in a transversal cut in the z = 0 plane. Note that this
plane is in the middle of the domain. In contrast with the Newtonian fluid, it is remarkable how
the center of vortices is moved on downstream for the viscoelastic case. Note that for this Reynolds
number the solution has axial symmetry.

In Fig. 14 the distribution of the dominant component of the stresses is shown on the plane
z = 0. The Newtonian case shows smaller values than the viscoelastic case and the maximum peaks
are reached at the center of the channel. However, the viscoelastic case accumulates stresses on the
walls immediately downstream of the aneurysm. This is graphically evaluated in Fig. 15, where
the norm of stresses over the top line in the z = 0 plane is plotted. The difference of magnitude in
this location is notable, as reported in [60]. The vertical lines indicate the region of the aneurysm.
This effect is important when dealing with aneurysms, and should not be neglected. Finer elements
around the walls would be needed to obtain smoother solutions.

6 Conclusions

In this work, a numerical approximation for VFSI problems with viscoelastic fluids in which elastic-
ity can be dominant has been presented. The main idea is to reproduce scenarios with a viscoelastic
fluid model and particularly using the so-called log-conformation reformulation. This technique al-
lows to treat the exponential growth of the elastic stresses and, therefore, extend the range of
Weissenberg numbers in which the VFSI problem can be solved.

Several numerical examples have been run to assess the performance of the proposed VFSI
problem and its applicability to viscoelastic flows with high elasticity. First of all, some examples
with Newtonian fluids have been performed to validate our FSI model and to show that both the
standard and the logarithmic formulation presented in Section 3 match with the classical Navier-
Stokes equations written in a three-field setting when We = 0.

Regarding the elasticity of the fluid, we have shown the effect of increasing it. When elasticity
increases, stresses do so significantly. This effect causes elastic forces to grow up and, therefore,
fluid tractions on the solid become higher.
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(a) Fluid domain

(b) Streamlines of the Newtonian fluid in a cut in the
z = 0 plane.

(c) Streamlines of the viscoelastic fluid in a cut in the
z = 0 plane.

Figure 13: Streamlines in the full domain and in a transversal cut, coloured with the norm of the
velocity.

With regards to the three-field formulations presented in this work, several conclusions can be
drawn. Firstly, we have shown the effect of considering the stress as a primary unknown. It becomes
crucial when dealing with viscoelastic flows due to the need to solve an additional differential
equation for the stresses. Furthermore, more accurate results are obtained for stresses with respect
to the classical two-field formulation in which these stresses are computed as a post-process. This is
clearly a benefit when computing fluid tractions to be imposed in the solid problem. When facing
high elasticity cases for the same mesh, the standard formulation fails to obtain smooth solutions,
whereas the logarithmic formulation is able to handle these situations and regular solutions are
obtained.

To end up, we have demonstrated the good performance of our implementation in a 3D problem.
Furthermore, the effect of considering the blood flow as a viscoelastic fluid and to mimic the arteries
as hyperelastic materials has been studied. The results prove that differences between Newtonian
and viscoelastic models should not be underestimated and that viscoelastic constitutive modeling
is necessary, specially when the flow rate in the artery increases.
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(a) Newtonian fluid (b) Viscoelastic fluid

Figure 14: First component of the stresses. Comparison between Newtonian and viscoelastic
regimes in a fluid domain transversal cut.

Figure 15: Comparison for the stress norm along the top wall in the plane z = 0 of the fluid domain.
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[15] A. Amani, A. Naseri, C. D. Pérez-Segarra, and A. Oliva. A method for fluid-structure inter-
action problems with non-Newtonian fluid. In Proceedings of the 6th European Conference on
Computational Mechanics (Solids, Structures and Coupled Problems) and the 7th European
Conference on Computational Fluid Dynamics, Glasgow, UK, pages 101–110, 2018.

[16] R. Fattal and R. Kupferman. Time-dependent simulation of viscoelastic flows at high Weis-
senberg number using the log-conformation representation. Journal of Non-Newtonian Fluid
Mechanics, 126(1):23–37, 2005.

[17] A.I. Leonov. Analysis of simple constitutive equations for viscoelastic liquids. Journal of
Non-Newtonian Fluid Mechanics, 42(3):323–350, 1992.

[18] Y. Kwon. Recent results on the analysis of viscoelastic constitutive equations. Korea-Australia
Rheology Journal, 14(1):33–45, 2002.

[19] R. G. Owens and T. N. Phillips. Computational rheology, volume 14. World Scientific, 2002.

[20] R. Fattal and R. Kupferman. Constitutive laws for the matrix-logarithm of the conformation
tensor. Journal of Non-Newtonian Fluid Mechanics, 123(2-3):281–285, 2004.

[21] M.A. Hulsen, A.P.G. Van Heel, and B.H.A.A. Van Den Brule. Simulation of viscoelastic flows
using Brownian configuration fields. Journal of Non-Newtonian Fluid Mechanics, 70(1-2):79–
101, 1997.

[22] L. Moreno, R. Codina, J. Baiges, and E. Castillo. Logarithmic conformation reformulation in
viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation.
Computer Methods in Applied Mechanics and Engineering, 354:706–731, 2019.

[23] D. Chakraborty and J. R. Prakash. Viscoelastic fluid flow in a 2D channel bounded above by
a deformable finite thickness elastic wall. Computers and Structures, 218:83–98, 2007.

[24] X. Luo, B. C., H. Liu, and W.Li. On the initial configurations of collapsible channel flow.
Computers and Structures, 85:977–987, 2007.

[25] X. Chen. Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids.
PhD thesis, Technische Universität Darmstadt, 2014.
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