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Abstract

The Material Point Method (MPM) stands as a continuum-based particle technique designed
for addressing large deformation problems. However, the treatment of incompressible materials us-
ing MPM remains underexplored. This study focuses on adapting established techniques from the
Finite Element Method (FEM) to address incompressibility within MPM for dynamic hyperelastic
problems. Firstly, we introduce a mixed displacement-pressure formulation to tackle incompressibil-
ity. Secondly, we employ two different stabilization techniques rooted in the Variational Multiscale
Method (VMS) to enable the utilization of equivalent low-order spaces for approximating both
primary unknowns. The efficacy of these formulations is compared with alternative stabilization
techniques and validated across various two- and three-dimensional benchmark problems to assess
its accuracy and robustness.

Keywords: Material Point Method (MPM), Particle Methods, Mixed formulations, Incompressible
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1 Introduction

Incompressible or nearly incompressible materials are found in a variety of real-world engineering
problems ranging from solid mechanics to fluid dynamics [1], as well as in some polymeric materials
that can sustain finite strains without volume changes [2]. However, the numerical simulation of
such materials remains a challenge in computational mechanics as a general consensus have not yet
been achieved and many of the proposed solutions still lack a deep and comprehensive mathematical
formulation.

Classical displacement-based formulations, in which the primary variable is the displacement (u)
field and the stress field is obtained a posteriori through differentiation, exhibit performance issues
when the incompressible limit is reached. These includes pressure instabilities, highly oscillatory
results, volumetric locking, etc [3]. In other words, these standard formulations fail when the Poisson’s
ratio ν approaches 0.5 [1].

Nevertheless, these issues have been extensively analyzed by different researchers in the last decades
and many possible solutions exist. For example the family of selective reduced integration methods,
such as the B-bar [4] or F-bar methods [5] or the mean dilatation finite element method [6]. All these
methods can successfully avoid the volumetric locking [7] providing widely used schemes often present
in many commercial codes. Unfortunately, these methods are classically designed to use structured
quadrilateral finite elements in two dimensions and hexahedral elements in the three-dimensional
case, but are often not prepared to use tetrahedral elements. The tetrahedral elements is often the
better choice for practical engineering applications as it offers greater flexibility in meshing complex
geometries.
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An alternative to obtain a robust formulation is to adopt a mixed approach [8]. If we examine
the incompressible, static and infinitesimal strain case in solid mechanics, we arrive at an elliptic
problem that is equivalent to the Stokes equations in fluid mechanics [9]. Therefore this makes sense
to extend the mixed velocity/pressure (v-p) formulation used in fluid mechanics to the displacement
and pressure (u-p) framework in solid mechanics.

It was first proposed by Hughes and coworkers in 1987 [10] and extended later by other authors.
An example is given by the work by Maniatty [11] where the authors apply this approach to nonlinear
elasto-visco-plastic materials in static regime.

However, as for Stokes problem, most of available mixed formulations in solid mechanics commonly
use equal order interpolations for both fields, and therefore these do not satisfy the Ladyzhensaya-
Babuska-Brezzi (LBB) condition [12] (also known as inf-sup condition) that ensure existence and
unicity of the solution of the problem. Note that this issue does not arise if we use higher-order
elements (with reduced integration); however, this significantly increases the degrees of freedom and,
consequently, the computational cost [13]. For this reason much interest has been focused on the
development of so-called stabilized procedures to compensate the violation of the inf-sup condition
[14]. Among others, we can mention the work of Masud et al. [15] where the authors stabilized the v-p
problem by using bubble functions in order to avoid “tuneable” parameters in the computations. In
[16] they also extended these mixed formulation to nonlinear hyperelasticity, but using the Variational
MultiScale (VMS) stabilization technique. VMS consists in splitting the solution of the continuous
problem into a component that can be solved by the FE space, and another, called the grid subscale.
The objective is to approximate the value of this subscale analitically as will be explained later. One
of the many benefits is that the method enables high-order, equal-order interpolations in FEM. A
succesful example of the use of VMS to incompressible nonlinear elasticity and elastoplasticity was
proposed by Chiumenti and coworkers [17]. The authors used the orthogonal subscales method (OSGS)
applied to a displacement pressure mixed formulation (u-p) , extending the original method introduced
by Codina for fluid dynamics problems [18]. Moreover, other researchers proposed alternative mixed
finite element methods with nodal finite element spaces for strain (u-ε), or stress (u-σ). This implies
an increment of unknowns per node while improving accuracy of the results. As an example, the
works of Cervera et al. [19, 20] investigate the idea of stabilizing the tensor of nodal stresses using
the VMS approach and the OSGS method for solving static problems. Also the work [21] presents the
application of a stabilized mixed strain/displacement (u-ε) for nonlinear solid mechanics problems
involving compressible and incompressible plasticity. In the context of the three-field formulations we
found the work of Simo et al. [22], which introduced a non linear version of a three-field Hu-Washizu
Variational principle, where displacement, pressure and the Jacobian of the deformation gradient are
independent field variables.

In the context of Lagrangian frameworks, we found a recent work of Lee et al. [23] in which a new
first-order mixed formulation was developed. It used an additional variable, a nodally interpolated
deformation gradient and Lagrange multipliers. The tests presented in this work show a second
order convergence for the stresses. In case of assuming incompressibility, the determinant of the
Jacobian must be also added as variable. In this case the authors used a combination of the streamline
upwind/Petrov-Galerkin (SUPG) stabilization [10]. On the other hand, Aguirre et al. [24] stabilize
the problem by means of approximate Riemann solvers for nodal finite volumes. More recently, we
can found interesting stabilized formulation for dealing with transient simulation. Among others, the
work of Scovazzi et al. [25, 26] in which a new approach is proposed for stabilizing linear tetrahedral
finite elements in case of nearly incompressible transient solid mechanics using a mixed formulation.
In this work the momentum equation is complemented by an equation for the evolution of the pressure
field. Also, in the context of the VMS displacement/pressure (u-p) formulation we found the work of
Castañar et al. [27] for simulating an hyperelastic material model in which the strain energy function
can be decomposed in deviatoric and volumetric parts. In this work we have extended this last VMS
u-p approach to be usable in a different discretization technique, as explained below. The choice of
VMS among the other available stabilization technique is justified by its accuracy and low dissipation
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effects if compared with classical methods.
Note that almost all the works presented up to now, employ the Finite Element Method (FEM). It

is a fact that FEM became attractive due to its ability to handle low or high-order approximations, and
to easily deal with complex geometries and nonlinear constitutive models. However, for solving large-
deformation problems in solid mechanics, it may cause the mesh to suffer excessive distortion, resulting
in significant accuracy loss or even compromising the FEM calculation. A possible solution to the
above problem is represented by the use of the so called Continuum-based Particle Methods. They are a
series of techniques that are well-suited for the solution of problems involving large displacement, large
deformation and history-dependent materials. We can highlight different methods within this family.
For instance, within the group of mesh-based Galerkin approaches we find the called Particle Finite
Element Method (PFEM), introduced by Idelsohn et al. [28]. Essentially, PFEM is a Lagrangian
FEM with remeshing. It was originally developed for free surface flows and breaking waves, but
has demonstrated its potential in several fields, including non-linear problems [29] not only in fluid
dynamics but also in solid mechanics [30] and geomechanics [31]. The first disadvantage of PFEM
is the frequent requirement for remeshing. This leads to a loss of conservation properties and a
significant computational burden, as remeshing is typically a non-parallel procedure. Alternatively,
we find also the mesh-free discretization techniques, and in particular the widely used Smoothed
Particle Hydrodynamics (SPH) [32, 33]. While SPH is intriguing in the realm of fracture mechanics
and mechanics of multi-phase media [34, 35], it also has certain limitations. These include low accuracy
in approximating discontinuous functions and the need to suppress non-physical instabilities through
the introduction of artificial viscosity, among others. We must highlight the work of Salis et al. [36],
which offers a comparative analysis of these two Lagrangian particle models, SPH and PFEM. On
the other hand, we also find the family of Particle-In-Cell methods (PIC) [37], which are based on
particles that move in a computational mesh while carrying the fields of a problem. The underlying
mesh (or grid) is used in order to compute an approximate solution that is projected and stored on
the particles, allowing for the easy discarding and reconstruction of the background mesh at each time
step. In the mid 90s, the application of PIC to solid mechanics leds to the Material Point Method
(MPM) [38] in which the constitutive equations are managed at a particle level. MPM exhibits
several characteristics that enable to avoid many of the typical drawbacks of other particle methods.
It combines a Lagrangian description of the continuum, which is discretized as a set of material points
that store historical variables with a fixed background grid used for finite element method calculation
[39]. The features of this method allow to track easily the deformation of the body avoiding the need
for remeshing. Therefore, MPM is very attractive for solving problems with very large deformations
[40] or for using complex constitutive laws [41, 42].

Nevertheless, the computation of incompressible mechanics problems it is not sufficiently explored
yet as MPM is more commonly used in compressible regimes. The same apply for mixed MPM
formulations as usually irreducible formulations are presented. An incompressible MPM formulation
for granular flows can be found in the work of Kularathna et al. [43] in which the Chorin projection [44]
is used as stabilization method, but considering a velocity-pressure (v-p) approximation. Additionally
it is worth mentioning the work of [45] that solves the incompressible material problem for a free flow
by splitting the solution of the momentum equation into two steps. Some procedures for the treatment
of locking issues can be found in the literature. Finally, an incompressible hyperelastic MPM mixed
(u-p) formulation was proposed by Iaconeta et. al. [46]. The authors used the Polynomial Pressure
Projection (PPP) [47] to stabilise the formulation. Unfortunately PPP only resulted to be effective in
static regime.

The goal of this work is to develop a robust mixed formulation to simulate transient incompressible
solid mechanics problems using MPM, since there is a clear lack of literature on the subject. While it
is true that recently, an application of VMS to the Navier-Stokes formulation discretized using MPM
was presented by Chandra et al [48]. This work employs only algebraic subgrid subscales and not
orthogonal ones. Additionally it is limited to incompressible fluids. Here, on the contrary, we will
show how the latter approach is crucial, for example, in cases where singularities occur in the solution.
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Furthermore, we will present the details of the general stabilization framework in the context of MPM
for solid mechanics materials, ensuring the reproducibility and reusability of the presented formulation
also for different materials.

The idea is to give a first approach to extend it in future works to other constitutive laws and
regimes, such as incompressible granular flows or non Newtonian fluid flows.

In this paper we present a VMS approach for simulating incompressible solid materials in both,
static and transient regimes following the strategy developed by [27]. Here, a deviatoric and volumetric
decomposition of the strain energy function is done in order to impose the incompressibility constraint
on hyperelastic materials in a natural way. The mixed formulation is defined in terms of displacements
and pressures (u-p). Both fields are approximated with piecewise linear functions. This strategy will
allow solving mechanical problems in the regime of large displacements and large deformations. This
method is accurate and robust, and it is demonstrated using a wide range of examples with large
deformations that are particularly difficult to simulate. Concerning to the temporal discretization, an
implicit Newmark time integration scheme is also used. All the implementations have been performed
using the open source code Kratos Multiphysics [49] written in C++ and python.

The paper is organized as follow: Section 2 introduces the governing equations, the variational
formulation of the problem and the linearization considered. Section 3 presents in detail the Material
Point Method and the discretizations considered. In Section 4 the stabilization based on the VMS
approach is described for the MPM. The algorithm implemented is detailed and discussed in Section
5. Finally, the numerical results are presented in Section 6, in which firstly the study of the mesh
convergence is presented, considering a manufactured solution for different stabilizations. Next, in
Section 6.2 the two-dimensional Cook’s membrane benchmark is performed for the static and the
dynamic case, comparing the results with other works. Lastly, the three-dimensional bending beam
is reproduced in Section 6.3 for validating the formulation in a bending dominated problem and in
Section 6.4 the twisting column test is reproduced in order to show the robustness of the stabilization
in a very challenging deformation problem. The conclusions are summarized in the Section 7.

2 Hyperelastic solid mechanics problem

2.1 Governing equations

Let Ω be an open, bounded domain in Rd, where d ∈ {2, 3} is the number of space dimensions. Let B
be a continuum body being formed by an infinite set of material points inside Rd which moves from
an original position to its current position at time t. The region occupied by the body is Ω, called the
initial configuration. We assume the existence of a one-to-one mapping function φ which characterizes
the motion (deformation) φ : Ω −→ Rd. Moreover we can define the vector of material coordinates X,
and the vector of spatial coordinates x . Therefore the function φ maps each point X into a spatial
point: x = φ (X, t) ,∀X ∈ Ω, t ≥ 0. The boundary of the reference configuration and the current
configuration are ∂Ω and φ(∂Ω) respectively. The time analysis is denoted by the interval ]0, T [, being
T the final time.

Let Ds = {x|x ∈ φ (Ω, t) , 0 < t < T} be the space-time domain where the problem is defined.
Taking into account the definitions described above, the boundary value problem for mixed solid
dynamics written in an updated Lagrangian formulation framework, consists in finding a displacement
field u : Ds −→ Rd and a pressure p : Ds −→ R such that:

ρ
∂2u

∂t2
−∇ · σ = ρb in φ (Ω, t) , t ∈]0, T [, (1)

p

κ
− (J − 1) = 0 in φ (Ω, t) , t ∈]0, T [, (2)

u = ū on φ (∂ΩD, t) , t ∈]0, T [, (3)

σ · n = t on φ (∂ΩN, t) , t ∈]0, T [, (4)
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In these equations, ρ is the density of the current configuration, given by the relation ρ =
ρ0
J
, where

ρ0 is the density of the initial configuration, J is the determinant of the deformation gradient F =
∂x

∂X
and b represents the body force. The Cauchy stress tensor σ can be decomposed into deviatoric and
volumetric components σ = σdev+ pI where p is the pressure and I the identity matrix. On the other

side, κ is the bulk modulus, defined as κ =
E

3(1− 2ν)
, where E is the Young’s modulus and ν is the

Poisson’s ratio of the material.
The problem is completed with the definition of proper Dirichlet (Eq. 3) and Neumann (Eq.

4), boundary conditions being ū, n and t the prescribed displacement, the outer normal and the
normal Cauchy traction vector respectively. The governing equations must be supplied with the
initial conditions of the form u = u0 and v = v0 in Ω at t = 0 for the displacement and velocities.

Let us now define some notation useful for Section 4, in which the stabilization is developed.
Calling U = [u, p], and F = [ρb, 0] and defining,

L(U) :=

(
−∇ ·

(
σdev + pI

)
p

κ
− (J − 1)

)
and Dt (U) :=

 ρ
∂2u

∂t2
0

 (5)

we may write (1)-(2) as
Dt (U) + L(U) = F. (6)

2.2 Hyperelasticity

The isotropic hyperelastic models postulate the existence of a Helmholtz free-energy function (or strain

energy function) Ψ (C) such that S = 2
∂Ψ(C)

∂C
, where S is the Second Piola-Kirchhoff (PK2) stress

tensor, and C = FTF is the right Cauchy-Green tensor. Once the PK2 stress tensor S is obtained,

the Cauchy stress tensor σ can be computed from the relation σ =
1

J
FSFT. The definition of Ψ (C)

will depend on the material law considered. Note that we can decouple the strain energy function as
Ψ (C) = Ψdev(C̄) +Ψvol(J) where C̄ = J−2/3C is the volume-preserving part of C. Therefore we can
express the tensor S as:

S := 2
∂Ψ

∂C
= 2

∂Ψdev

∂C
+ 2

∂Ψvol

∂C
= 2

∂Ψdev

∂C
+

dΨvol

dJ
JC−1 (7)

So we can identify Sdev = 2
∂Ψdev

∂C
and p =

dΨvol

dJ
. In this work we have employed the Neo-Hookean

model as the deviatoric model due to simplicity reasons. It is defined as Ψdev(Ī1) =
µ

2

(
Ī1 − 3

)
where

Ī1 is the first principal invariant defined by Ī1 = tr
(
C̄
)
, and µ is the shear modulus, defined as

µ =
E

2(1 + ν)
. On the other side, the volumentric model considered is the quadratic one [50] that

is written as Ψvol(J) =
κ

2
(J − 1)2 and which implies that

dΨvol(J)

dJ
= κ (J − 1). Let us define

some notation useful for next sections, in particular for the linearization section. We define C = 2
∂S

∂C
as the material tangent constitutive tensor, and c the spatial tangent constitutive tensor defined as
c = J−1FFCFTFT.

2.3 Incompressibility

In this work we consider the incompressibility of the material, a fact that is easily imposed in our
equations. In particular, equation (2) allows us to additionally simulate the incompressibility limit in
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the materials, as detailed in [27]. Note that the incompressibility limit occurs when Poisson’s ratio
ν → 0.5 and then κ → ∞. In that case the equation (2) implies directly that

J − 1 = 0 ⇔ J = 1.

2.4 Variational formulation

The variational formulation of the problem defined by the set of equations (1)-(4) is obtained following
the same procedure as for the classical FEM. Let us now introduce some new notation to properly set
up the formulation.

Let φ(Ω) be the deformed domain where a problem needs to be solved. Given a set ω ⊂ φ(Ω),
L2(ω) is the space of square integrable functions in ω. The L2 inner product in ω (for scalars, vectors
and tensors) is denoted by (·, ·)ω and the integral over ω of the product of two general functions is
written as ⟨·, ·⟩ω.

Note that the subscript will be omitted when ω = φ(Ω). Regarding the definition of the spaces, we
consider V and Q the proper functional spaces where the displacement and pressure are well defined
for each time t ∈ (0, T ). We denote V0 the functions in V which vanish in the Dirichlet boundary
φ(∂ΩD). Hence we take W := V ×Q and W0 := V0 ×Q. The variational statement of the problem
is derived by testing the equations (1) and (2) against arbitrary tests functions, w ∈ V0 and q ∈ Q
respectively. Therefore, the weak form of the problem consists in finding U = [u, p] :]0, T [−→ W ,
such the initial conditions are satisfied, and for all V = [w, q] ∈ W0,

(Dt (U) ,V ) +B (U ,V ) = F (V ) (8)

where:

(Dt (U) ,V ) :=

(
ρ
∂2u

∂t2
,w

)
(9)

B (U ,V ) := (L (U) ,V ) =
(
σdev,∇sw

)
+ (pI,∇sw)−

(p
k
, q
)
+ (J − 1, q) (10)

F (V ) := ⟨F,V ⟩ = ⟨ρb,w⟩+ ⟨t,w⟩φ(∂ΩN) , (11)

where that B (U ,V ) is a semilinear form defined on W ×W0 and F is a linear form defined on W0.

2.5 Linearization of the problem

The linearization of the problem employs a classical Newton-Raphson iterative procedure, commonly
utilized for solving nonlinear problems. In this case, the variational problem (8) exhibits both, material
and geometrical nonlinearities, and therefore this methodology is suitable. The operators B and Dt

can be linearized through a Taylor expansion truncated after the first derivative, which is evaluated
at the last known equilibrium configuration Û = [û, p̂]. These approximations allows to compute the
correction unknowns δU = [δu, δp], where δu ≈ u− û and δp ≈ p− p̂. In particular, for the operator
B (U ,V ) we have the next expression:

B (U ,V ) ≈ B(Û ,V ) +Blin(Û ; δU ,V ) + o(δU), (12)

where the bilinear term Blin(Û ; δU ,V ) is computed doing the directional derivative of B at û in the
direction of δu and also the directional derivative of B at p̂ in the direction of δp. It results in this
expression:

Blin(Û ; δU ,V ) =
(
∇δu · (σ̂dev + p̂I),∇w

)
+
(
(cdev + p̂ (I⊗ I− 2I)) : ∇sδu,∇sw

)
+ (δp,∇ ·w)−

(
δp

k
, q

)
+ (∇ · δu, q) ,
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where I is the identity matrix, (I⊗I)abcd = δabδcd and Iabcd = δacδbd are fourth order tensors, being δab
the delta of Dirac. Note that now, this linear operator is defined in the space W0 ×W0. For clarity,
we have expressed σ̂dev = σdev(û) as the known stress computed at the last known equilibrium
configuration, and c

dev is a four-order tensor which is the deviatoric part of the spatial tangent
modulus, also known. Analogously, for the dynamic term, we have:

Dt(U) = Dt(Û + δU) ≈ Dt(Û) +Dt (δU) + o(δU),

where Dt (δU) must be discretized temporally following an implicit or an explicit temporal scheme.
Considering the above, the fully linearized problem of (8) can be expressed as follows: given Û as
solution of the last equilibrium configuration, find the correction δU = [δu, δp] :]0, T [−→ W0 such
that

(Dt (δU) ,V ) +Blin(Û ; δU ,V ) = F (V )− (Dt(Û),V )−B(Û ,V ) (13)

for all V ∈ W0. Let us introduce the operator Llin, useful in Section 4:

Llin(Û ; δU) := −∇ · (∇δu · (σ̂dev + p̂I))−∇ ·
(
(cdev + p̂ (I⊗ I− 2I)) : ∇sδu

)
−∇δp

−δp

κ
+∇ · δu

 . (14)

This is obtained by integrating by parts the bilinear operator Blin(Û ; δU ,V ) = (Llin(Û ; δU),V ).
Therefore the fully linearized problem can be expressed also as follows:

(Dt (δU) + Llin(Û ; δU),V ) = (F− L(Û)−Dt(Û),V ).

3 Numerical approximation: the Material Point Method

3.1 The MPM scheme

Let us now briefly present the Material Point Method (MPM), which is the framework in which this
work is developed. The MPM is a particle-based method, which combines the use of a Lagrangian
description (represented by material points) with a discretization of the computational domain (defined
by an Eulerian grid). This feature allows tracking the deformation of the body and retrieving history-
dependent material information at each time instant of the simulation. In this work, the classical
interpolation procedure with linear shape functions and an implicit Newmark time integration scheme
has been considered. The general algorithm is composed by three different phases [38] which will be
briefly described:

1. The initialization phase. In this stage, the connectivity is defined for the material points, and
initial conditions are imposed on the nodes of the background mesh through a projection of the
material point information from the previous tj time step.

2. The UL-FEM calculation phase. The classical FEM problem is solved on the nodes of the
background mesh using and Updated Lagrangian approach. Remark that in the MPM the
material points are chosen as integration points and their volumes as the corresponding weights.

3. The convective phase. The nodal information at time tn+1 is interpolated back to the material
points, and the position of the material points is updated. Finally, the underformed FE grid is
recovered.

More details concerning the MPM algorithm can be found in [51, 46].
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3.2 Spatial MPM discretization

First, let us point out that the spatial discretization of the equations closely mirrors the conventional
Galerkin approach employed in the Finite Element Method (FEM). However, significant distinctions
exist: the Finite Element mesh precisely corresponds to the background mesh, while the material
points serve as the integration points. Importantly, these material points may not inherently reside
at optimal positions within each element, as expounded upon in the preceding section.

Now, let us introduce some of notation. We denote Ph as the finite element partition of the
domain, corresponding to the background mesh. The diameter of an element K ∈ Ph is denoted by
hK and the diameter on the finite element partition by h = max{hK |K ∈ Ph}. We can now construct
conforming finite element spaces Vh ⊂ V , Qh ⊂ Q for the displacement and pressure respectively,
and Wh = Vh ×Qh. The space whose functions vanish on the Dirichlet boundary is Vh,0 ⊂ V0, and
therefore Wh,0 = Vh,0 ×Qh. The problem (8) discretized can be written as follows: for a given tn+1

and a fixed iteration, find δUh ∈ Wh,0 such that:

(Dt (δUh) ,V h) +Blin(Ûh; δUh,V h) = F (V h)− (Dt(Ûh),V h)−B(Ûh,V h) (15)

for all V h = [wh, qh] ∈ Wh,0. Note that we consider the usual FE function vh(x) =
∑ng

I=1NI(x)vI ,
where NI is the shape function for the node I, vI is the function evaluated in the coordinates of the
node I and ng is the global number of nodes. Now, as it was introduced previously, the particularities
of the MPM must be highlighted. First, in this method the mass density field has the expression
ρ(x) =

∑nmp

mp=1mmpδ(x − xmp), where δ(·) is the Dirac delta function and mmp is the mass of the
particle, nmp is the total number of particles. Secondly, the volume integrals are evaluated as the sum
of values of the integrand at each particle multiplied by the particle’s volume Vmp. This issue may
introduce some quadrature errors, which have been analyzed and studied in some works [52]. Finally,
the FE functions are evaluated on the particles.

3.3 Temporal discretization

The temporal scheme considered here is the implicit one. In the MPM framework is more usual to
find explicit time integrations (see for example [53, 54]) or semi-implicit approaches (see [45, 55])
as they are easy to implement, efficient and stable for short-duration dynamic problems. The main
drawback is that extremely small time steps are required to obtain an accurate solution. But we have
two additional reasons for using it: the first is that, for low strain rates, it is more efficient to use an
implicit time integration scheme [56]. The second reason is that, in the presence of incompressibility
constraints, standard explicit schemes become practically useless, as the time step approaches zero
when the bulk modulus tends to infinity. Although there are other possibilities for the discretization
in time, we will restrict ourselves to the Newmark-β equations, as employed in other MPM works [57].
Let us consider a partition of the interval [0, T ] into N subintervals of constant size δt. Taking into
account this time integrator formula, the updated acceleration an+1 and velocity vn+1 are given by:

an+1 ≈ 1

βδt2
{un+1 − un − δtvn − δt2

2
(1− 2β)an}

vn+1 ≈ vn + (1− γ)δtan + γδtan+1

where β and γ are parameters that can be vary, but when β =
1

4
and γ =

1

2
, the method is implicit,

unconditionally stable and second order accurate.

3.4 Algebraic system

With the ideas presented in previous sections in mind, we can write the equation (15) expressed in
algebraic form as this equation system:
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Mρ
∂

∂2t
δu+ (KG +KM )δu+Bδp = Fu (16)

B∗δu+
1

κ
Mδp = Fp (17)

where the matrices can be specified as:

BIJ =

nmp∑
mp=1

VmpNI(xmp)∇NJ(xmp), B∗
IJ =

nmp∑
mp=1

VmpNI(xmp)∇NJ(xmp),

MIJ =

nmp∑
mp=1

VmpNI(xmp)NJ(xmp),

KG
IJ =

nmp∑
p=1

Vmp∇NI(xmp)(σ̂
dev + p̂I)(xmp)∇NJ(xmp),

KM
IJ =

nmp∑
mp=1

Vmp∇NI(xmp)(c
dev + p̂ (I⊗ I− 2I)) (xmp)∇NJ(xmp),

Fu
I =

nmp∑
mp=1

Vmp(σ̂
dev + p̂I)(xmp)∇NI(xmp) +

nmp∑
mp=1

Vmpρ(b+ a)NI(xmp) ,

Fp
J =

nmp∑
mp=1

Vmp

(
p̂

κ
− (J − 1)

)
(xmp)∇NI(xmp) ,

where KG is the geometric stiffness matrix, KM the material stiffness matrix. Note that in the set of
equations (16) - (17), δu and δp represents the global nodal solution. In the local system, δuJ , δpJ
are the nodal unknowns. Therefore, the global system can be written as follows:[

A11 A12

A21 A22

] [
δu
δp

]
=

[
Fu

Fp

]
(18)

where A11 = ρM
∂

∂2t
+ KG + KM , A12 = B, A21 = B∗ and A22 =

1

κ
M . We need to remark two

aspects: the first one is that the main matrix associated to the problem is not symmetric in general
(the equality B = B∗ is not necessarily satisfied in case of choosing other volumetric model to describe
hyperelasticity as it is pointed out in [27], for example Simo-Taylor model [22]). The second one is that
the block A22 would be exactly a null matrix in the fully incompressible problem. In the subsequent
sections, the consequences of this null-matrix will be explained.

4 Stabilized MPM formulation for incompressible materials

First of all, let us underline the necessity of stabilizing the MPM formulation delineated previously for
incompressible materials. The constitutive equation presented, complements the momentum equation
thanks to the deviatoric/volumetric decomposition of the deformation energy function [58]. It has
the advantage of adequately imposing the incompressibility constraint on hyperelastic materials in
a natural way. However, the resulting system is unstable, presenting a saddle-point structure, and
violating the inf-sup condition by choosing interpolations of equal order (see system (18), where the
A22 block would be a zero matrix). Note that in the case of compressible materials the problem is
well defined, and no stabilization techniques are needed. It is important to note that, since MPM is
based on the classical FEM framework for solving the problem at each time step, the VMS approach
allows for equal-order interpolations, just as in FEM.

This section presents two different formulations to stabilise the problem, both based on the Varia-
tional Multi-Scales (VMS) method, (extensively described in [59]), and developed for an incompress-
ible solid mechanics in the FEM framework by [27]. This type of stabilizations have good advantages
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compared to other methods in terms of robustness and accuracy [60, 61]. Although non-residual ap-
proaches have proven effective [62, 63], the two stabilization methods we will describe in this work are
both residual-based, which represents the classical approach in VMS. The study of non-residual VMS
stabilizations for MPM could be an interesting line of research.
Let us briefly describe the main idea of the VMS methods. It consists in splitting the solution of the
continuous problem U into two parts: the Uh component that can be solved by the FE space, and
the remainder Ũ , which will be called the grid subscale. Note that the final number of degrees of
freedom is the same as that of the Galerkin method. The idea is to replace the bilinear form, in the
above expression Blin, by another one to improve the stability properties.
We apply these ideas to our formulation. Let W = Wh ⊕ W̃ , where W̃ is the space which complete
Wh in the continuous space W . The VMS method leads to find δUh ∈ Wh,0 and Ũ ∈ W̃ , where the
space W̃ will be approximated by a finite-dimensional space. The elements of this space are denoted
by Ũ ≡ [ũ, p̃] and they are called subgrid scales. Note that, for simplicity, we will treat the subscales
as quasi-static. However, incorporating dynamic subscales could provide benefits, especially when
dealing with small time steps relative to the mesh size [64, 65]. We can, therefore, write the linearized
problem as

(Dt (δUh) ,V h) +Blin(Ûh; δUh,V h) +
∑
K

⟨Ũ ,L∗(Ûh;V h)⟩K (19)

= F (V h)− (Dt(Ûh),V h)−B(Ûh,V h),

where the operator L∗ is the formal adjoint of the linearized operator Llin defined in (14) and Ũ is the
sub-grid scale, which needs to be approximated, without considering boundary conditions. As it was
mentioned previously, we will consider the sub-scales to be quasi-static, therefore we have assumed

that
∂2ũ

∂t2
≈ 0. The methodology is classical, therefore we do not explain all the details and only the

main definitions are described here (for more details, see for example [27]). In our work, the adjoint
operator considered is:

L∗(Û ;V ) :=

(
−∇ · (∇w · (σ̂dev + p̂I))−∇ · (∇sw : (cdev + p̂ (I⊗ I− 2I))) +∇q

− q

κ
+∇ ·w

)
(20)

which is obtained integrating by parts the linearized main operator of the problem: Blin(Û ; Ũ ,V h) =
(Llin(Û ; Ũ),V h) = (L∗(Û ,V h), Ũ). Taking P̃ the L2 projection onto the space of subscales (the
projections considered will be detailed later), the approximation we consider for the sub-grid scales
within each element is Ũ ≈ τK P̃ [Rh] where Rh is the residual of the problem, defined as

Rh = F−Dt(Ûh)− L(Ûh)−Dt (δUh)− Llin(Ûh; δUh).

On the other hand, τK is a diagonal matrix that depends on K and the main operator of the problem
(in this case Llin). This matrix is defined as τK = diag(τ1Id, τ2), called the stabilization parameter
matrix, which is a diagonal matrix. The stabilization parameters τ1 and τ2 are obtained explicitly from
the study of the behaviour from a Fourier analysis, as is done in [66] for a transient incompressible
flow. In this work we have chosen the stabilization parameters considered for the linear elastic case,
as in [19]:

τ1 = c1
h2K
2µ

and τ2 = 2c2µ, (21)

where µ is the shear modulus defined by the material properties and hK corresponds to the character-
istic element length calculated in the two-dimensional case as the square root of a element area, and
in three-dimensional case as the cubic root of the element volume. Note that τK is computed in each
element. Moreover, c1 and c2 are algorithmic parameters that need to be determined. In this work,
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we set c1 = c2 = 1 following the approach used and validated through numerical testing in [61]. With
these ideas in mind, we can formulate the following problem (20): find δUh ∈ Wh such that

(Dt (δUh) ,V h) +Blin(Ûh; δUh,V h) + S(Ûh; δUh),V h)

= F (V h)− (Dt(Ûh),V h)−B(Ûh,V h) +R(Ûh;V h) (22)

where

S(Ûh; δUh,V h) =
∑
K

τK⟨P̃ [−Dt (δUh)− Llin(Ûh; δUh)],L∗(Û ;V h)⟩K

R(Ûh;V h) = −
∑
K

τK⟨P̃ [F−Dt(Ûh)− L(Ûh)],L∗(Û ;V h)⟩K

for all V h ∈ Wh. Note that the operator S(Ûh; δUh,V h) corresponds to the stabilization terms
located in the left-hand-side (LHS) of the equation, while the R(Ûh;V h) are the located at the
right-hand-side of the equation (RHS). In these equations, P̃ is the projection restricted to the appro-
priate components of the FE residual onto the space of sub-grid scales. For defining this projection
we consider two possibilities. If we consider P̃ = I, the the method is called Algebraic Sub-Grid
Scales (ASGS). Otherwise, in case of P̃ = P⊥

h = I − Ph, the method is named Orthogonal Sub-Grid
Scales (OSGS), where Ph is the L2 projection onto the appropriate finite element space. Note that
independently of the choice of the projection P̃ , the method is consistent.

Now we can write explicitly the stabilization terms, naming S1, S2 as S = S1 + S2 and R1, R2 as
R = R1 +R2 with the subindex 1 indicates the terms associated to the momentum equation and the
subindex 2 the related to the constitutive equation. In this work, linear elements have been considered,
so some simplifications can be considered, such as neglecting the second order terms. This results in
the definition of the operators as follows:

S1(Ûh; δUh,V h) =
∑
K

τ1

〈
P̃

[
−ρ

∂2δuh

∂t2
+ (∇δuh · ∇p̂h) + (∇p̂h (I⊗ I− 2I) : ∇sδuh) +∇δph

]
,

− (∇wh · ∇p̂h)−∇qh − (∇swh : ∇p̂h (I⊗ I− 2I))
〉

K

S2(Ûh; δUh,V h) =
∑
K

τ2

〈
P̃

[
δph
κ

−∇ · δuh

]
,∇ ·wh −

qh
κ

〉
K

R1(Ûh;V h) =
∑
K

τ1

〈
P̃ [−ρbh − ρah −∇p̂h] ,

− (∇wh · ∇p̂h)−∇qh − (∇swh : ∇p̂h (I⊗ I− 2I))
〉
K

R2(Ûh;V h) =
∑
K

τ2

〈
P̃

[
− p̂h

κ
+ (J − 1)

]
,∇ ·wh −

qh
κ

〉
K

.

Remind that a is the acceleration that is known for a previous time step and Ûh is the solution
at the previous equilibrium configuration. Therefore, the stabilized problem can also be expressed as
an algebraic system:

Mρ
∂

∂2t
δu+ (KG +KM )δu+Bδp+ τ1(B

G +BM )ρ
∂

∂2t
δu (23)

+τ1(K
GG +KGM +KMG +KMM )δu+ τ2Kδu

−τ1(K
G′

+KM ′
)δp+ τ2Bδp = Fu + Fs,u

B∗δu+
1

κ
Mδp+ τ1Bρ

∂

∂2t
δu+ τ1(B

G −BM )δu (24)
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+
τ2
κ
B′δu− τ1Kδp− τ2

κ
Mδp = Fp + Fs,p

where the matrices M,KG,KM , B,B∗ were specified in the section 3.4, and the remainder can be
written as follows:

BG
IJ =

nmp∑
mp=1

Vmp∇NI(xmp)∇p̂h(xmp)NJ(xmp),

BM
IJ =

nmp∑
mp=1

Vmp∇NI(xmp)(∇p̂h (I⊗ I− 2I))(xmp)NJ(xmp),

KGG
IJ =

nmp∑
p=1

−Vmp∇NI(xmp)p̂h(xmp)∇NJ(xmp)p̂h(xmp),

KGM
IJ =

nmp∑
p=1

−Vmp∇NI(xmp)(∇p̂h (I⊗ I− 2I))(xmp)∇NJ(xmp)p̂h(xmp),

KMM
IJ =

nmp∑
p=1

−Vmp∇NI(xmp)(∇p̂h (I⊗ I− 2I))(xmp)(∇p̂h (I⊗ I− 2I))(xmp)∇NJ(xmp),

KMG
IJ =

nmp∑
p=1

−Vmp∇NI(xmp)p̂h(xmp)(∇p̂h (I⊗ I− 2I))∇NJ(xmp),

KG′
IJ =

nmp∑
mp=1

Vmp∇NI(xmp)p̂h(xmp)∇NJ(xmp),

KM ′
IJ =

nmp∑
mp=1

Vmp∇NI(xmp)(∇p̂h (I⊗ I− 2I))(xmp)∇NJ(xmp),

B′ =

nmp∑
mp=1

VmpNI(xmp)∇NJ(xmp), K =

nmp∑
mp=1

Vmp∇NI(xmp)∇NJ(xmp)

Fs,u
I = τ1

nmp∑
mp=1

ρVmp(b+ a+∇p̂h)(xmp)(−∇NI(xmp)∇p̂h(xmp)) +

+τ1

nmp∑
mp=1

ρVmp(b+ a+∇p̂h)(xmp)∇NI(xmp)(∇p̂h (I⊗ I− 2I))(xmp)

+τ2

nmp∑
mp=1

Vmp

(
− p̂

κ
+ (J − 1)

)
(xmp)∇NI(xmp) ,

Fs,p
I = τ1

nmp∑
mp=1

ρVmp(b+ a+∇p̂h)(xmp)∇NI(xmp)

+τ2
∑nmp

mp=1 Vmp

(
p̂

κ
− (J − 1)

)
(xmp)NI(xmp).

Note that for simplicity in the notation, only we have detailed the ASGS case (considering P̃ = I).
For the OSGS case, we only need to add residual projections terms to the right hand side vectors
Fs,p and Fs,u. As we have shown in the previous section, again, the global stabilized system can be
expressed as: [

As,11 As,12

As,21 As,22

] [
δu
δp

]
=

[
Fs,u

Fs,p

]
(25)

where the subscript s indicates the matrices including the contributions of the stabilization terms.
Where As,.. = A.. + As

.. and Fs,. = F. + Fs,. being A.. and F. the contribution that come from the
Galerkin procedure (see (18)) and As

.. and Fs,. those deriving by the stabilization matrix given
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As
11 = τ1(ρ

δ2

δt
(BG +BM ) + (KGG +KGM +KMG +KMM )) + τ2K,

As
12 = −τ1(K

G′
+KM ′

) + τ2B,

As
21 = −τ1(ρ

δ2

δt
B +BG −BM ) + τ2

1

κ
B′,

As
22 = −τ1K − τ2

1

κ
M .

Therefore, we can rewrite the system as[
A11 +As

11 A12 +As
12

A21 +As
21 A22 +As

22

] [
δu
δp

]
=

[
Fu + Fs,u

Fp + Fs,p.

]
(26)

Comparing the expression (25) with the algebraic structure that comes from the Galerkin approach
(18), we can observe that now, the block As,22 ̸= 0 in both cases. We can observe that we have
the presence of the the stiffness matrix K multiplied by τ1, that is different to zero even in fully
incompressible cases (in which κ → ∞).

5 Algorithm and linearization

This section presents the algorithm employed in this work, as well as some important observations
about the linearization process. The main MPM scheme is shown in the Algorithm 1, already described
from a general perspective in Section 3.1.

Here the particular characteristics of the mixed formulation and the calculation of the stabiliza-
tion terms are also included, employing some extra details. The mass matrices considered in the
implemented algorithm are lumped, therefore we are avoiding problems related to the consistent mass
matrices [67]. Regarding the notation followed, it is the same indicated in Section 3.2: the subscripts
mp and I, refer to the variables assigned to the material points and computational nodes respectively,
while the nmp denotes the total number of particles per geometrical element, xmp are the local co-
ordinates of the material point mp and NI(xmp) is the shape function evaluated at the position of
the material point relative to the node I. The mass of the particle mp is denoted by mmp, mI is the
lumped grid mass matrix and nI denotes the total number of nodes per geometrical element. Note
that the initial nodal pressure must be inizialized as well in the convection phase. The pressure on the
material points is updated in addition to the material point displacement, velocity and acceleration,
such as it is indicated in [46].

Regarding the treatment of non-linearities, in the Section 2.5 the weak form of the equations
have been linearized using the Newton-Raphson’s scheme. Therefore, for each internal iteration to
compute the solution in each time step, the equations defined by the expression (22) are computed.
In particular:

• The non-linear terms have been linearized using the Taylor expansion with a quadratic truncation
error together with the Newton-Raphson’s scheme, considering û and p̂ known fields obtained
from the previous iteration of the current time step.

• The orthogonal projection of any function f has been approximated as P⊥
h [fk] ≈ fk −Ph[f

k−1],
the superscript being the step counter or iteration counter.

1. If the projection is done at the previous time step, we have to compute the residual at
the nodes and then interpolate it to the material points and store it as a global variable.
Therefore, in the next time step, this information will be mapped back to the nodes again.

2. In case of the computation at previous iteration, it is done in the UL-FEM calculation
phase and no significant changes in the algorithm would be considered. However in our
algorithm we have also stored the projection into the nodes in order to initialize the next
time step with this value.
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Algorithm 1 General algorithm for the mixed MPM using VMS.

1: read initial condition u0
mp

2: set p0mp = 0, P 0
u = 0, P 0

p = 0
3: for j = 0, 1...,m− 1 do (Temporal loop)
4: ▷ 1. Initialization phase
5: clear nodal info and recover undeformed background mesh.
6: mapping of nodal data projecting the solution from the previous time step:

7: ⇒ uj
I =

∑nmp

mp=1 NI(xmp)mmpu
j
mp

mI
, pjI =

∑nmp

mp=1 NI(xmp)mmpp
j
mp

mI
,

8: where mI =
∑nmp

mp=1 NI(xmp)mmp. Analogously for vj
I and aj

I .

9: if P̃ = P⊥
h then (OSGS)

10: mapping residual projections Pu and Pp from nodal values.
11: end if
12: set FE functions uj

h, p
j
h from nodal values uj

I , p
j
I .

13: predictor of Newmark method:
14: δuj+1

h = 0, pj+1
h = pjh.

15: computing prediction also for vj+1
h and aj+1

h .
16: ▷ 2. UL-FEM calculation phase
17: set k = 0
18: set δuj+1,0

h = δuj+1
h , pj+1,0

h = pj+1
h

19: if P̃ = P⊥
h then (OSGS)

20: set P j+1,0
u = P j+1

u and P j+1,0
p = P j+1

p .
21: end if
22: while not converged do
23: k ← k + 1
24: compute stabilization parameters: τ j+1,k

1 and τ j+1,k
2

25: evaluation of local residual (RHS) and Jacobian matrix (LHS).
26: assemble RHS and LHS to globals.
27: solve the general equations (22) for δuj+1,k

h and δpj+1,k
h .

28: corrector of Newmark method:
29: δuj+1,k

h + = δuj+1,k−1
h

30: pj+1,k
h + = pj+1,k−1

h .
31: computing correction for vj+1

h and aj+1
h .

32: check convergence
33: if P̃ = P⊥

h then (OSGS)
34: compute projections

35: P k
u = Ph

[
−ρb− ρaj+1,k

h −∇pj+1,k
h

]
and P k

p = Ph

[
−
pj+1,k
h

κ
+ (Jj+1,k − 1)

]
36: end if
37: end while
38: compute the displacements uj+1,k

h = δuj+1,k
h + uj

h

39: set converged values
40: uj+1

h = uj+1,k
h

41: pj+1
h = pj+1,k

h

42: set nodal values uj+1
I , pj+1

I from FE functions uj+1
h , pj+1

h .
43: ▷ 3. Convective phase
44: interpolate nodal information into the mp:
45: uj+1

mp =
∑nI

I=1 NI(xmp)u
j+1
I , pj+1

mp =
∑nI

I=1 NI(xmp)p
j+1
I

46: if P̃ = P⊥
h then (OSGS)

47: interpolate residual projections Pu and Pp into the mp.
48: end if
49: update the kinematics and the position on the mp.
50: end for(End temporal loop)

Finally, concerning the temporal Newmark algorithm, apart from the primary variables (displace-
ment and pressure), also the velocity vh and acceleration ah have to be predicted and corrected.
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6 Numerical examples

In this section, the formulation is validated across various examples to show the advantages of the MPM
stabilizations explained previously. Firstly, we present a convergence test employing a manufactured
solution. Subsequently, we address the two-dimensional Cook’s membrane problem in both static and
dynamic scenarios to compare different stabilizations and investigate the mesh refinement’s impact
concerning the number of material points per element. Section 6.3 explores the resolution of the three-
dimensional problem involving a bending beam to assess the formulation’s robustness in scenarios
dominated by bending. Lastly, Section 6.4 tackles the twisting problem, a highly challenging example
characterized by extreme deformations on a column.

6.1 Manufactured solution

The first numerical results correspond to the convergence study of the stabilized formulations imple-
mented using MPM. For this example, the exact solution is defined by the following set of equations:

ux(x, y) = k(x+ y)2 exp(x+ y),

uy(x, y) = −k(x+ y)2 exp(x+ y),

p(x, y) =
E

3
sin(2πx) cos(2πy),

where x and y components of the displacement are indicated with a subscript, p is the pressure and
k = 0.01 m−1 is a constant. Note that the chosen displacement field results in incompressible motion
(J = 1). The Young’s modulus considered is E = 10 MPa. Consequently, the forcing terms added to
the general equations are:

fu = −∇ · σexact,

fp = 0,

The forcing terms are explicitly derived by substituting the exact solution into the general equations
without including the time derivatives, thereby mitigating the introduction of additional temporal
errors. Consequently, the term σexact is computed using the volumetric decomposition defined in (7).
The computational domain is considered as an unit square Ω = [0, 1]× [0, 1] m2, and the background
space discretized using structured linear (P1) elements with element sizes ranging from h = 0.2 m to
h = 0.03125 m (see the Figure 1a). Figure 1b illustrates the pressure distribution of this manufactured
solution. Three different stabilizations are considered to study mesh convergence: PPP, ASGS and
OSGS. ASGS and OSGS are the stabilizations developed in this work, while PPP (Polynomial Pressure
Projection) was introduced by Dohrmann and Bochev [47] and also utilized by Iaconeta et al. [46] for
stabilizing the mixed formulation. PPP modified the mixed variational equation using L2 polynomial
pressure projection.

Finally, Figure 2 presents the convergence plots for the displacement and the pressure using the
L2- norm. For meshes composed of linear elements, an optimal convergence rate of 2 for displacements
and 1 for pressure is expected. Notably, the super convergence phenomenon is observed in the pressure
field, where a quadratic convergence rate is consistently demonstrated across all three stabilizations
considered in this study.

6.2 Cook’s membrane

The Cook’s membrane serves as a standard two-dimensional benchmark [68], notably valuable for
evaluating formulations and implementations. While typically introduced in static scenarios [17],
literature also documents its dynamic variant [69]. This study encompasses examination across both
regimes.
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(a) Background mesh h=0.2 (m) (b) Pressure distribution

Figure 1: Convergence test. One structured background mesh discretization and the pressure distri-
bution solution.
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Figure 2: Convergence test. Discrete L2- errors for displacements and pressure using a manufactured
solution with linear elements (P1) in the background mesh. PPP, ASGS and OSGS methods have
been employed.

6.2.1 Setup

The problem geometry comprises a clamped panel on the left, where displacement is constrained to
zero, and a vertical load is applied to the right side. The other two boundaries of the material domain
remain free.

In order to conduct a comprehensive study, comparing the results with those in the literature,
different geometry sizes, properties, and discretizations were considered for both the static and dynamic
cases:

• Static case:

- Properties: These are ρ = 1 kg/m3 for the density, the Poisson’s ration is ν = 0.5 and the
Young’s modulus is E = 70 Pa. The vertical load considered is of t = (0, 0.0625) Pa.

- Geometry: It is ten times larger than the one considered in the dynamic cases: the size of
the clamped boundary is 44 m, and the smaller side is 16 m.

- Discretization: five different strutuctured refinements have been considered with element
sizes h = {4, 2, 1, 0.5 and 0.25} (m) (equivalently: 8, 16, 32, 64 and 128 elements per size).
A fixed number of 3 material points per element has been employed. The background mesh
is confined to the material domain, with material points acting solely as integration points.
Consequently, the loading condition is directly imposed on the conforming left boundary.
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(a) Geometry (m). (b) Background mesh.

Figure 3: Cook’s membrane problem setup for the dynamic case.

• Dynamic case:

- Properties: Density and Possion’s ratio are the same that for the static case. The Young’s
modulus is E = 250 Pa. In this case the vertical load considered is of t = (0, 6.25) Pa.

- Geometry: The sizes of the model are specified in Figure 3a.

- Discretization: an element size of h = 0.1 m is used, with varying numbers of material
points per element. Here, the background mesh does not align with the material domain.
The loading condition is directly applied to the material points, due to the non-conforming
nature of this boundary [70] (Figure 3b).

6.2.2 Results

Initially, the analysis will focus on the static Cook’s membrane case. Figure 4 depicts the convergence
assessment for the vertical displacement at point A (refer to Figure 3a) using various stabilization
methods. It is noteworthy that in the absence of stabilization, the convergence rate is lower compared
to the other cases. All stabilized formulations (including those proposed employing ASGS and OSGS,
as well as the previously introduced PPP [46]) exhibit an absence of volume locking. These results
have been compared with several papers found in the literature, either using FEM (see [71]) or MPM
[46]. In all cases, the reported solution for the y-displacement at the top-right corner (point A)
is 0.275 m. Figure 5 compares the pressure fields obtained with each stabilization method under
consideration. Notably, in the absence of stabilization, discernible pressure jumps are detected between
elements of the background mesh. Conversely, in stabilized scenarios, the pressure field is effectively
captured, although with some variances observed among methods. Particularly remarkable is the
OSGS stabilization (Figure 5d), which adeptly captures pressure peaks in the corner, a characteristic
attributed to its propensity for accurately capturing singularities in the solution. This phenomenon
was also reported in the work by Castanar et al. [27] for the dynamic case using FEM. Regarding the
number of internal iteration, in general while the OSGS needs a large number of iterations (8 in this
case) for achieving the convergence, the ASGS that here converges using 4 internal iterations.

Let us now analyse the dynamic case. The plots in Figure 6 illustrate the temporal evolution at
point A. It is outstanding that the non-stabilized formulation exhibits breakdown within a few time
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(a) (b)

Figure 4: Cook’s membrane static problem. Convergence of the vertical displacement uy(m) at point
A.

(a) No stabilization (b) PPP (c) ASGS (d) OSGS

Figure 5: Cook’s membrane static problem. Pressure solution for the mesh h = 0.15m on the nodes
of the background mesh.

steps; hence, it is not depicted here.
Before proceeding with the analysis, allow us to provide a brief explanation of the cell-crossing

instability [56] in the MPM. This instability arises due to the movement of material points from
one element to another, occasionally resulting in an imbalance of internal forces at a node. This
phenomenon can induce unphysical oscillations and yield inaccurate outcomes. Generally, mitigating
the cell-crossing effect can be achieved by employing a greater number of material points and/or
smaller time steps. Numerous studies have addressed this issue through alternative techniques. For
instance, Tielen et al. [72] investigate the combination of quadratic B-spline basis functions with
a reconstruction-based quadrature rule. Additionally, Guilkey et al. [73] propose not to reset the
grid configuration at the end of each time step. The resultant algorithm closely resembles the classi-
cal Updated Lagrangian Finite Element Method (UL-FEM), yet exhibits significantly reduced mesh
distortion owing to the initial mesh comprising elements with right-angle corners.

This error is evident in Figure 6a: ideally, the minimum and maximum displacement peaks should
remain consistent throughout each oscillation cycle; however, a distortion becomes apparent over time.
This issue is notably mitigated by increasing the number of material points, as illustrated in Figure
6c, where the element size remains fixed at h = 0.1 m. As depicted, solution convergence is attained
upon employing a sufficient number of material points per element.

Moreover, in Figure 6a, a comparison between different stabilizations is conducted, with the number
of material points set to 33. Here, it is observed that both ASGS and OSGS stabilizations more
accurately capture the minimum peak over time compared to the PPP stabilization, when contrasting
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(a) y-displacement with mp = 33, h = 0.1 m. (b) Pressure with mp = 33 and h = 0.1 m.

(c) y-displacement with ASGS and h = 0.1 m. (d) y-displacement with ASGS and mp = 33.

Figure 6: Cook’s membrane dynamic problem. Evolution in time of the point A=(4.8,6,0) m, consid-
ering time step dt = 0.025 s.

the results with those obtained by [27] in FEM. In the FEM case, the minimum peak reaches values
lower than 0.2, around 0.15 m. While the y-displacement at point A yields nearly identical results
between the new stabilizations, discernible differences are evident in pressure evolutions. From this,
it can be concluded that VMS-type stabilizations mitigate the “cell-crossing” error more effectively in
comparison to the PPP method.

It is noteworthy to observe that despite addressing the cell-crossing error, the y-displacement
solution aligns with results from other studies employing FEM [69, 27]. Additionally, mesh convergence
can be reported, as evidenced in Figure 6c.

Let us now address another consequence of the cell-crossing instabilities. In Figure 6d, the number
of material points per element is set to 33, with varying element sizes for the mesh. Notably, when
the mesh size is fixed at h = 0.1 m, distortions are observed in the minimum peaks of the solution.
This observation may seem counterintuitive, as spatial refinement typically leads to more accurate
solutions. Molinos et al. [74] have previously documented this effect. In his study, Molinos investigated
the appropriate ratio between the number of material points and mesh size required to accurately
reproduce a case without such distortions. In the current example (refer to Figure 6d), it is observed
that employing a smaller number of material points (for example, 12 instead of 33) circumvents this
instability. This suggests that 12 material points for a mesh size of h = 0.1 m falls within the “stable
region”, representing a favorable ratio between the number of particles and mesh size.

Lastly, we must address the pressure oscillations illustrated in Figure 6b. Despite the Newmark
scheme being second-order accurate for β = 1

4 and γ = 1
2 , it does not inherently introduce numerical

dissipation, which would typically aid in mitigating high-frequency oscillations of unphysical modes.
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Consequently, the time evolution of the pressure field, as depicted in Figure 6b, exhibits non-smooth
behavior. This issue can be ameliorated by employing a BDF2 scheme, which has been shown to
dissipate nonphysical modes while preserving model accuracy (see [27]). Additionally, the Generalized-
α methods [75] are noted in the literature for controlling numerical dissipation. However, it is observed
that the oscillations are considerably mitigated when employing ASGS or OSGS stabilizations, in
contrast to PPP, as the former methods introduce more dissipation compared to the latter.

6.3 3D bending beam

Let us now introduce the first three-dimensional example utilizing the presented stabilizations. The pri-
mary aim of this example is to demonstrate the formulation’s capability to address bending-dominated
problems for incompressible materials.

6.3.1 Setup

The initial geometry adopted in this study is consistent with that used in previous literature [76, 25, 27].
The geometry is a parallelepiped with dimensions 1 × 1 × 6 m as illustrated in Figure 7a. Initially

(a) Geometry. (b) Mesh.

Figure 7: Beam problem setup.

the beam is stress-free, with the initial displacements set to zero u0(x, y, z) = 0. The bottom face is
clamped, imposing zero displacements u(x, y, z) = 0. All boundary conditions are specified by zero
tractions. The movement of the beam is induced by the following initial velocity condition

v0(x, y, z) =

(
5

3
z, 0, 0

)T

m/s.

The origin is located at the center of the base of the column and the initial velocity is represented by
several arrows of varying lengths in Figure 7a. Regarding the material properties, these are: density
ρ = 1100 kg/m3, Young’s modulus of E = 1.7× 107 Pa, and Poisson ration ν = 0.5. The background
mesh is unstructured, as shown in Figure 7b. Three different meshes were used, varying the element
size and the number of particles per element as summarized in Table 1. The time step used in all
cases is δt = 0.001 s.

6.3.2 Results

Figure 8 depicts the deformation of the beam and the distribution of pressure at three different time
instants, considering the first case described in Table 1. It is remarkable that in this visualization,
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Case element size h(m) mp per element

1 0.25 12
2 0.1667 12
3 0.1667 24
4 0.1667 48
5 0.125 12

Table 1: Meshes considered in the study.

the solution is plotted over the material points rather than the background mesh elements. For this
study, only the ASGS stabilization has been employed, as the results obtained are very similar to
those achieved using the OSGS stabilization.

It is remarkable that the pressure field distribution is effectively captured by the implemented
formulation and is consistent with findings from other studies [25, 27]. Additionally, it is observed
that the PPP stabilization was unable to solve the problem under the same configuration. From this,
it can be concluded that VMS demonstrates greater robustness than PPP in solving three-dimensional
problems dominated by bending.

(a) t = 0.5 s (b) t = 1.0 s (c) t = 1.5 s

Figure 8: Bending beam problem. Distribution of the pressure field using the ASGS stabilization,
h = 0.25 m and 12 mp.

Let us now present the time evolution of point A, as depicted in Figure 7a, focusing on the first
component of the displacements. This temporal evolution is plotted for three different mesh sizes and
three different numbers of material points per element in Figure 9. It is important to note that the
solution has been computed up to T = 3 s.

Once again, to examine the impact of mesh refinement, we have maintained the number of material
points at 12 and conducted experiments with three different mesh sizes. The trajectory of point A in
these scenarios is depicted in Figure 9a. Notably, there are no significant variations observed between
the considered refinements, and the solution closely aligns with other FEM reference works [25, 27]. In
the case of the work by Scovazzi et al. [25], we also compare three different meshes, reporting similar
behavior. However, there exists a difference in the frequency of oscillations among the refinements.
This discrepancy is evident in Figure 9c, which illustrates the field’s evolution between t = 2 s and
t = 2.5 s. Based on this observation window, it can be inferred that a finer mesh yields a solution
with lower-frequency oscillations.

To investigate the influence of the number of material points per element, we have maintained the
element size at 0.16 m (cases 2-4 in Table 1) and varied the number of material points per element.
The results are presented in Figure 9b. Notably, differences are readily discernible in the zoomed-in
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(a) Mesh comparison with mp = 12. (b) Number of mp per element with h =
0.16 m.

(c) Zoom Figure 9a. (d) Zoom Figure 9b.

Figure 9: Bending beam problem. Evolution in time at point A with coordinates (0.5,0.5,6) m for the
first component of the displacements for three mesh refinements and three different material points
per element, using the ASGS stabilization.

view depicted in Figure 9d. Here, variations in the maximum peak are apparent as the number of
material points increases, indicating spatial convergence. This phenomenon can be attributed to the
reduction of the cell-crossing instability with an increase in the number of particles, or simply to the
better accuracy associated with a higher number of material points.

6.4 3D twisting column test

The final example is the three-dimensional twisting column test, widely conducted in literature [24,
25, 27, 77], to assess formulations under heavy deformations in incompressible regimes.

6.4.1 Setup

The configuration is nearly identical to that of the previous example. In this case, the torsional motion
is implemented with the following initial velocity condition:

v0(x, y, z) = 100 sin
(πz
12

)
(y,−x, 0)T m/s.

The bottom side is fixed, with displacements set to zero, while the remaining boundaries are free. The
initial motion is illustrated in Figure 10. The material properties are identical to those in the previous
example: density ρ = 1100 kg/m3, Young’s modulus of E = 1.7 × 107 Pa, and Poisson ratio ν = 0.5.
The meshes employed are also taken from the previous example. The mesh details are illustrated in
Figure 7 and summarized in Table 1. The time step employed for all cases is δt = 0.001 s.
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Figure 10: Twisting problem setup.

(a) h = 0.25 m (b) h = 0.166
m

(c) h = 0.125
m

Figure 11: Pressure distribution at t = 0.1 s for three different background meshes with mp = 12 per
element.

6.4.2 Results

Firstly, it is important to highlight that, similar to the previous example, the Polynomial Pressure
Projection (PPP) stabilization fails to reproduce the desired outcome. We must emphasize that
the implementation of the Polynomial Pressure Projection (PPP) that we have used was validated
by Iaconeta et al. (2019). Although PPP was able to compute the static and dynamic Cook’s
membrane case in previous sections, this method fails after a few time steps for the three-dimensional
example. However, the Variational Multiscale (VMS) stabilization achieves convergence, indicating
its robustness in handling large deformation problems in three-dimensional scenarios.

Concerning the results, we begin by presenting the distribution of the pressure field across the
column in Figure 11 at time t = 0.1 s for the three mesh refinements. It is evident that there exists a
strong dependence between the overall number of material points and the deformation and pressure
solution. Note that although the number of material points per element remains constant, the global
number of material points has varied significantly. This variation is explained by the fact that the
initial location of the material points depends directly on the element size of the background mesh.

These discrepancies are further accentuated in Figure 12. These plots seek to present both the
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sensitivity of mesh refinement and the sensitivity of the number of material points (mp) per element.
The time evolution at point A (illustrated in Figure 10 and situated at (0.5, 0.5, 6)) for each displace-
ment component is depicted. Note that each row in Figure 12 corresponds to a specific displacement
component.

(a) mp = 12 (b) h = 0.16

(c) mp = 12 (d) h = 0.16

(e) mp = 12 (f) h = 0.16

Figure 12: Evolution in time for the three components of the displacement for the point A = (0.5, 0.5, 6)

Starting the analysis by comparing the different mesh refinements (first column of Figure 12),
significant differences are observed between the cases, particularly in the behavior of the first and
second displacement components. Specifically, for the coarse mesh, the solution exhibits significant
distortion compared to the reference solution. Additionally, the maximum peaks are poorly captured
in this case. Despite these shortcomings, the convergence of the mesh is clearly evident.

In the plots displayed in the second column of Figure 12, the mesh size is fixed at h = 0.16 m,
while the evolution is tracked for different numbers of material points per element. In this scenario,
significant variations are observed up to the time t = 0.15 s. These variations may be attributed to the
cell-crossing effect discussed earlier. Notably, the minimum peak of uz(m) is attained in the case where
a greater number of material points (mp) per element has been employed (see Figure 12f). Note that
convergence for the finer mesh (h = 0.125 m) with mp = 12 is not achieved due to the aforementioned
effect. However, the peak response is accurately captured when the number of material points per
element is increased.

Now, let us to compare the evolution of the first component of the displacement, ux (m), partic-
ularly focusing on the peak occurring at t = 0.1. This comparison is depicted in Figure 12a and 12b.
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We observe that increasing the number of material points does not result in variations in the maximum
value, whereas different solutions are obtained with varying element sizes. From this observation, we
can infer that in this case, the error arises from the background mesh discretization rather than the
cell-crossing effect.

If we contrast these plots with the solutions reported by Scovazzi et al. [25] and Castañar et al.
[27], we find some differences. Although the overall pattern is very similar, it is true that in this study,
starting from 0.25 seconds, the plots show a delay. While the values of the peaks (the maximum and
minimum displacements ) reached, are close, they occur a bit later after 0.25 seconds. This is a very
extreme example, and therefore, the reason for this delay is probably due to the cell crossing error.

(a) t = 0.01 (b) t = 0.02 (c) t = 0.03 (d) t = 0.04 (e) t = 0.05 (f) t = 0.06 (g) t = 0.07 (h) t = 0.1

Figure 13: Norm of the displacements in several times (s) for mesh h = 0.125 m.

Lastly, Figure 13 illustrates the shapes assumed by the material points throughout the simulated
time. This test is particularly demanding due to the substantial deformation of the column, especially
considering an incompressible material. Therefore, the notable accuracy and robustness of the results
are evident. The solution has been compared with other studies [25, 27], leading to the conclusion
that the displacements have been accurately captured with the implemented MPM formulation.

7 Conclusions

In this paper, two stabilizations methods based on the Variational Subgrid-Scales (VMS), namely the
Algebraic Subgrid Scale (ASGS) and Orthogonal Subgrid Scale (OSGS) have been employed to solve
a mixed incompressible hyperelastic problem in the Material Point Method (MPM) framework. While
this formulation has demonstrated favorable results in Finite Element Method (FEM), as evidenced
in existing literature, this study marks the first application of such stabilization techniques in the
context of solid dynamics using implicit MPM. We have chosen a hyperelastic material to compare
our results with those obtained in the literature using FEM. Our intention is to provide an initial
approach that could, in the future, be extended to other constitutive laws, such as Mohr-Coulomb
(suitable for modeling granular flows) in incompressible regimes, where MPM shows a clear advantage
over FEM.
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Regarding the formulation employed, it is the standard in the case of solid dynamics. The main
equations presents geometrical and material non-linearities. Thus, the solution process involves lin-
earizing the equations followed by stabilizing the linearized problem. Although the formulation de-
velopment bears resemblance to the Finite Element Method (FEM) case, certain modifications in the
primary Material Point Method (MPM) algorithm are imperative. Firstly, the integration points are
now represented by the material points, which are in motion, unlike the traditional Gauss points.
Secondly, the treatment of orthogonal projections in the Orthogonal Subgrid Scale (OSGS) stabiliza-
tion warrants careful consideration, as it necessitates the storage of additional information within the
material points.

The proposed formulation underwent rigorous testing using multiple benchmarks for validation,
along with one test for verification. Initially, the formulation was verified through a manufactured
problem, demonstrating consistent and robust results. Notably, it exhibited quadratic L2-convergence
for the linear elements in displacement and superconvergence in the pressure field.

The validation have been assessed by various incompressible numerical examples, employing linear
elements in both two-dimensional and three-dimensional cases. This served a dual purpose: comparing
classical benchmarks with existing literature and examining particularly challenging problems that
pose difficulties in reproducibility. In the two-dimensional case, the renowned benchmark in solid
mechanics, the Cook’s Membrane, was chosen. It was tested for both static and dynamic cases, the
latter being less explored in literature. For both cases the formulation shows a good accuracy and
robustness, despite of the problems arising from the method, such as cell crossing. These issues were
meticulously analyzed by varying two discretizations: the number of material points per element
and the element size of the background mesh. In this example, we can also compare the two new
stabilization techniques that have been developed. In general, the accuracy between them is quite
similar. However, while ASGS requires fewer inner iterations to converge in each time step than
OSGS, the latter is more effective at capturing singularities.

Finally, we validated two three-dimensional problems: the first aimed at studying bending-dominated
scenarios, and the second has reproduced torsion forces over a column. The latter is particularly chal-
lenging to compute numerically, due to many numerical methods unable to fully solve the problem.
The combination of a robust formulation with MPM enables the calculation of challenging cases like
this, obviating the need for remeshing or using other techniques such as front tracking to obtain the
solution.

Code availability

For this work, the open-source multiphysics software KRATOS [49, 78, 79] has been used, which is
written in C++ and offers a Python interface. The current version can be obtained from [80].
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Politècnica de Catalunya, 2019.

[52] M. Steffen, R.M. Kirby, and M. Berzins. Analysis and reduction of quadrature errors in the
material point method (MPM). International Journal for Numerical Methods in Engineering,
76(6):922–948, 2008.

[53] C.M. Mast, P. Mackenzie-Helnwein, P. Arduino, G.R. Miller, and W. Shin. Mitigating kinematic
locking in the material point method. Journal of Computational Physics, 231(16):5351–5373,
2012.

[54] J.G. Li, Y. Hamamoto, Y. Liu, and X. Zhang. Sloshing impact simulation with material point
method and its experimental validations. Computers & Fluids, 103:86–99, 2014.

[55] M.-J. Li, Y. Lian, and X. Zhang. An immersed finite element material point (IFEMP) method
for free surface fluid–structure interaction problems. Computer Methods in Applied Mechanics
and Engineering, 393:114809, 2022.

[56] A. de Vaucorbeil, V.P. Nguyen, S. Sinaie, and J.Y. Wu. Material point method after 25 years:
Theory, implementation, and applications. Advances in applied mechanics, 53:185–398, 2020.
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