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Abstract

This work applies and compares mixed formulations for both fluid and solid domains in
Fluid-Structure Interaction (FSI) problems to the standard irreducible formulations. The study
focuses on a nonlinear setting involving incompressible Newtonian fluids and hyperelastic
solids, with the fluid described using an arbitrary Lagrangian-Eulerian framework and the
solid modeled within a total Lagrangian framework. Stabilization is achieved through the
use of the variational multiscale method, which allows for arbitrary interpolations of the un-
knowns. The results demonstrate that mixed formulations not only enhance stability and ac-
curacy but also address key numerical challenges in FSI problems. These formulations ef-
fectively mitigate volumetric locking in nearly or fully incompressible materials and shear
locking in bending-dominated scenarios, ensuring robust performance across a wide range
of conditions. Additionally, they provide significantly improved precision in stress computa-
tions, which is particularly valuable in FSI problems where traction conditions at the interface
must be accurately satisfied. While mixed formulations introduce additional degrees of free-
dom per node, they achieve comparable accuracy to standard irreducible formulations even
with coarser meshes, making them a highly competitive and efficient alternative for complex
coupled simulations. The mixed formulations are tested through FSI numerical results for
semi-stationary and fully transient cases, highlighting their potential for robust and efficient
FSI simulations.

Keywords: Fluid-Structure Interaction (FSI); Mixed formulations; Nonlinear solid dynamics; New-
tonian fluids; Variational Multi-Scale (VMS) framework; Orthogonal Sub-Grid Scales (OSGS)

1 Introduction

Fluid-Structure Interaction (FSI) encompasses the complex interplay between fluid flow and solid
deformation, where the behavior of each domain directly influences the other. This phenomenon
is critical in numerous scientific and engineering applications, such as aerodynamics [1], biome-
chanics [2], biomedical applications [3] or energy systems [4]. For example, understanding how
airflow deforms an aircraft wing or how blood flow interacts with arterial walls requires accu-
rately capturing the bidirectional coupling between fluid and solid domains. The challenges as-
sociated with FSI problems, such as handling incompressible materials, large deformations, and
ensuring numerical stability, make them a focal point of computational mechanics research. Ad-
dressing these issues requires sophisticated numerical methods that can robustly and efficiently
resolve the coupled dynamics [5].
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A key area of interest in FSI problems involves the modeling of incompressible Newtonian
fluids, governed by the Navier-Stokes equations, and nonlinear hyperelastic solids. Newtonian
fluids, characterized by a linear relationship between stress and strain rate, are widely encoun-
tered in engineering and natural systems, including airflows, water currents, and blood flow in
arteries [6]. The incompressibility constraint, while essential for accurately capturing physical be-
havior, introduces numerical challenges, such as pressure instabilities and the need for specialized
stabilization techniques [7, 8]. On the solid side, hyperelastic materials, which exhibit nonlinear
stress-strain relationships, are essential for representing biological tissues, polymers, and other
flexible materials subject to large deformations [9, 10]. These materials require advanced consti-
tutive models to accurately describe their behavior under complex loading conditions [11]. When
coupled in an FSI framework, the interaction between incompressible Newtonian fluids and hy-
perelastic solids introduces significant computational complexities, including the need to address
both volumetric and geometric nonlinearities, making this an important focus for numerical re-
search [12].

Two main numerical strategies are commonly employed to solve FSI problems: monolithic
and partitioned formulations. The monolithic formulation for FSI solves the fluid and solid equa-
tions as a single, fully coupled system, providing strong coupling and high accuracy, particularly
in nonlinear or large-deformation scenarios [13]. However, its high computational cost, lack of
modularity, and complexity in implementation make it less practical for many applications. In
contrast, partitioned schemes, such as block-iterative methods, solve the fluid and solid subprob-
lems independently, coupling them through iterative exchanges of forces and displacements at
the interface. This approach is more flexible and computationally efficient, allowing the use of
specialized solvers and numerical techniques for each subdomain. While ensuring stability in
partitioned methods requires careful consideration, their versatility and lower complexity make
them a widely used alternative for FSI problems [14].

In an FSI framework, the most common approach for solving each subproblem is to use irre-
ducible formulations, where velocity and pressure are the primary variables in the fluid domain,
while displacements are used in the solid domain. These formulations are straightforward and
computationally efficient, which has contributed to their widespread adoption in engineering ap-
plications. However, they present certain limitations that can affect the accuracy and stability of
simulations. On the one hand, in the fluid domain, irreducible formulations may lack accuracy
in computing stress fields, which is crucial for capturing complex flow dynamics and accurately
determining the forces acting on the solid structure [15]. On the other hand, in the solid domain,
these methods often struggle with nearly or fully incompressible materials, leading to issues such
as volumetric locking. Additionally, irreducible formulations in solids can suffer from shear lock-
ing, particularly in thin structures or when bending deformations are significant [16, 17].

To address these limitations, mixed formulations introduce additional variables, such as pres-
sure as an independent field in the solid or the deviatoric stress in both domains. By enriching
the variable space, mixed formulations improve the accuracy in the calculation of stresses and ef-
fectively mitigate numerical issues like volumetric and shear locking in solids. They enhance the
flexibility of the Finite Element (FE) interpolations, allowing for a more accurate representation
of both volumetric and shear deformation modes, even with coarser meshes or in cases involving
nearly incompressible materials. The use of mixed formulations for each subproblem in an FSI
framework (fluid dynamics on one side and solid dynamics on the other) is by no means new.
Their design, implementation, and numerical analysis have already been extensively studied,
demonstrating their effectiveness and advantages when applied individually to these domains
[18, 19].

Let us now briefly review the use and advantages of mixed formulations in fluid dynamics and
solid mechanics. In fluid dynamics, they are essential for accurately solving incompressible flow
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problems, where both velocity and pressure fields must be properly resolved [20]. This necessity
arises from the structure of the governing equations: the momentum equation couples velocity
and pressure through the pressure gradient, while the incompressibility condition imposes a con-
straint that must be satisfied to ensure a physically consistent solution. A well-posed formulation
requires treating pressure as an independent unknown, ensuring stability through appropriate
function spaces that satisfy an inf-sup condition [19, 21]. Standard velocity-pressure formulations
are effective in many scenarios; however, they become insufficient when a more accurate represen-
tation of the stress field is needed or when dealing with complex fluids such as non-Newtonian or
viscoelastic fluids [22, 23], extensively studied in our research group. A velocity-pressure-stress
formulation provides an alternative approach, but it must also address two key sources of in-
stability: the first stems from the incompressibility constraint and the loss of stability in stress
field computations, while the second arises from the convective term. The first type of insta-
bility can be mitigated by selecting an appropriate interpolation for the unknowns that satisfies
the inf-sup condition, as demonstrated in [22]. Beyond the choice of function spaces, stabilizing
velocity-pressure-stress formulations requires addressing convective instabilities, particularly in
high Reynolds number flows and viscoelastic models. Common approaches include Variational
MultiScale (VMS) methods [22] or SUPG-like stabilization [24]. These strategies enhance the ro-
bustness of velocity-pressure-stress formulations, making them a valuable tool for complex fluid
simulations, such as viscoelastic flows and FSI problems.

Our research group has extensive experience with mixed formulations in solid dynamics. In
the context of infinitesimal deformations, our group has analyzed the performance of mixed for-
mulations to address the limitations of irreducible approaches. In [25, 26], a two-field displacement-
pressure formulation was studied in depth, focusing on its ability to handle nearly and fully in-
compressible materials effectively. Additionally, the studies in [27, 28] demonstrated the good per-
formance of mixed FEs using strain/displacement and stress/displacement pairs as primary vari-
ables. While these formulations lead to a significant increase in the number of unknowns per node,
they also provide considerable improvements in the accuracy of strain and stress computations.
These properties are particularly valuable, and sometimes indispensable, in applications such as
viscoelasticity or fracture mechanics [29]. Furthermore, [30] explored the use of displacement-
pressure-stress and displacement-pressure-strain formulations, demonstrating their effectiveness
in solving incompressible cases where high accuracy is required in stress and strain fields. The ap-
plication and benefits of these mixed formulations have been demonstrated in various scenarios,
including topology optimization [31], friction stir welding processes [32], analysis of thin struc-
tures [33], structural failure analysis [34], and inelastic deformations [35], among others.

Moving to the context of finite deformations, our group has analyzed mixed formulations to
address the challenges associated with nearly and fully incompressible materials or scenarios re-
quiring a high degree of accuracy in stress computations. In [36, 37], the displacement-pressure
formulation was studied as a robust approach to handle incompressibility in hyperelastic mate-
rials. Additionally, in [16], a two-field formulation, which considers the displacement and the
second Piola-Kirchhoff (PK2) stress tensor as independent variables, was developed to study thin
compressible structures. Subsequently, in [38], a three-field formulation was examined, introduc-
ing both the deviatoric part of the PK2 stress tensor and the pressure as additional variables. This
approach demonstrated significant advantages, not only in effectively addressing incompress-
ibility but also in achieving high accuracy in stress computations, which is essential in scenarios
involving complex material behavior and large deformations. A comprehensive review of these
mixed formulations and their properties, analyzing their performance under both total and up-
dated Lagrangian frameworks was presented in [18]. Additionally, the application of these mixed
formulations can be found in various contexts, such as topology optimization of structures sub-
jected to FSI [39], or in electromechanics [40], further demonstrating their versatility and effective-
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ness in addressing complex multiphysics problems.
Both for fluids and for solids, the increase in accuracy of formulations incorporating additional

unknowns does not mean an increase in the convergence rate when the FE mesh is refined (or the
polynomial order of the interpolation is increased). For all the formulations to be presented the
convergence rate is expected to be the same when adding new unknowns. However, for a given
discretization we will demonstrate that better accuracy is attained.

The benefits of mixed formulations in individual domains, such as high accuracy, improved
convergence properties, and broader applicability, are well established. Our hypothesis is that the
interaction problem can ”inherit” these benefits, resulting in enhanced overall performance. Addi-
tionally, ensuring a consistent matching of unknowns (velocity/stress/pressure for the fluid and
displacement/stress/pressure for the solid) through field-to-field coupling may lead to a more
accurate and robust solution. In this paper, we demonstrate that this is indeed the case, show-
ing that the high accuracy, better behavior of coupling schemes, and convergence improvements
can outweigh the increase in the number of degrees of freedom (DOFs) compared to irreducible
formulations.

The structure of this article is organized as follows. First, Section 2 introduces the foundational
concepts, theories, and methodologies necessary to understand the coupled FSI problem analyzed
in this work. Next, Section 3 focuses on the nonlinear solid dynamics problem, presenting three
different formulations and employing a Total Lagrangian (TL) framework to describe the material
response under the finite strain assumption. Following this, Section 4 addresses the Navier–Stokes
problem for incompressible Newtonian fluids, where both the irreducible and three-field formu-
lations are described within an Arbitrary Lagrangian–Eulerian (ALE) framework. Then, Section
5 presents the FSI problem and discusses the staggered approach used to solve it, incorporating
a Dirichlet-Neumann coupling scheme for the interface conditions. Subsequently, Section 6 pro-
vides several numerical examples to analyze and compare the application of mixed formulations
in FSI problems. Finally, Section 7 summarizes the main findings and conclusions of this work.

2 Preliminaries

This section provides a summary of the key concepts, theories, methodologies and background
knowledge necessary for understanding the main content for the coupled problem presented in
this study.

2.1 Time discretization

For the sake of conciseness, only the implicit second order backward difference scheme (BDF2) is
considered. Let us consider a partition of the time interval [0, T] into N time steps of size δt, as-
sumed to be constant. Given a generic time-dependent function f , whose value at a time step n+ 1
is approximated by f n+1 (n = 0, 1, 2, . . . ), the approximation of both, the first and the second time
derivatives of second order are written using information from already computed time instants
and f n+1, which is being computed at this time step according to the following approximations:

δ2 f
δt

∣∣∣∣
tn+1

:=
3 f n+1 − 4 f n + f n−1

2δt
=

∂ f
∂t

∣∣∣∣
tn+1

+O(δt2),

δ2
2 f

δt2

∣∣∣∣
tn+1

:=
2 f n+1 − 5 f n + 4 f n−1 − f n−2

δt2 =
∂2 f
∂t2

∣∣∣∣
tn+1

+O(δt2).

Appropriate initializations are required for n = 1, 2.
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2.2 Notation for the weak formulation

Let us introduce some notation for deriving the weak form of the formulations we need to develop.
As usual, the space of square integrable functions in a domain ω is denoted by L2 (ω), whereas the
space of functions whose first derivatives are square integrable is denoted by H1 (ω). The space
H1

0 (ω) consists of functions in H1 (ω) vanishing on Dirichlet boundaries. We shall use the symbol
⟨·, ·⟩ω to refer to the integral of the product of two functions in a domain ω, not necessarily in
L2(ω). The subscript is omitted when ω = Ω, being Ω the domain of study for each sub-problem.

2.3 Spatial discretization

Regarding spatial discretization, the standard FE approximation is considered for all formulations.
Let Th = {K} be a FE partition of the domain of study Ω. The diameter of an element domain
K ∈ Th is denoted by hK and the diameter on the FE partition is given by h = max{hK|K ∈ Th}.
With these ideas in mind, we can now construct conforming FE spaces Xh ⊂ X being X any
proper functional space where an unknown solution is well-defined. Similarly, we define the
corresponding subspace X 0

h ⊂ X 0, X 0 being made of functions in X that vanish on the Dirichlet
boundary.

2.4 The VMS framework

All the formulations considered in this work must be stabilized so as to avoid satisfying inf-sup
conditions among the unknowns of the problem and to tackle the incompressible limit (see, e.g.,
[21]). The stabilized FE method we propose to use in the following is based on the VMS concept
[41, 19]. Let X = Xh ⊕ X̃ , where X̃ is any space to complete Xh in X . The elements of this space
are called SubGrid Scales (SGSs). Likewise, let X 0 = X 0

h ⊕ X̃ 0.
In this work, we consider Orthogonal SubGrid Scales (OSGS), where the SGS space is consid-

ered to be orthogonal to the FE space, as it is argued in [7]. Furthermore, a key property of the
OSGS stabilization is that, thanks to the projection onto the FE space, we keep the consistency
of the formulation in a weak sense in spite of including only the minimum number of terms to
stabilize the solution [42, 43], allowing us to define a term-by-term stabilization technique called
Split OSGS (S-OSGS), which is the one we consider in this work. For further details on how the
stabilization technique is applied to the solid dynamics formulations, the reader is referred to [18],
whereas the interested reader can find a thorough description of its application to fluid dynamics
formulations in [19].

Regardless of which space is X , we denote the L2 projection onto Xh by Πh, and the L2 pro-
jection onto X̃ by Π⊥h = I − Πh. In our implementation, for any function f , Π⊥h f is computed
iteratively, so that at iteration i we approximate Π⊥h f i ≈ f i −Πh f i−1.

3 Solid dynamics problem

This section presents the system of partial differential equations governing nonlinear solid dynam-
ics, capturing the material response under conditions of large deformations and complex stress
states. A TL framework is employed for the solid, incorporating the constitutive relations that
define the material’s nonlinear behavior.

3.1 The continuum problem statement

Consider the motion of a body that, in its initial or material configuration, is represented by an
open, bounded, and polyhedral domain Ωo

s in Rd, where d ∈ {2, 3} denotes the spatial dimen-
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sionality. The boundary of this reference configuration is denoted by Γo
s , with an outward unit

normal vector NNNs. Following the motion, the body occupies a spatial configuration at time t given
by the domain Ωs(t) and its boundary is denoted by Γs(t). We denote as [0, T] the time interval
of analysis for all problems to be considered. Let Ds = {(X, t)| X ∈ Ωo

s , 0 < t < T} be the space-
time domain where the solid problem is defined. The motion is characterized by a time-dependent
mapping field ϕϕϕ that maps each material point X ∈ Ωo

s to its corresponding location x ∈ Ωs(t) in
the spatial configuration, as defined by

ϕϕϕ : Ωo
s −→ Ωs(t), x = ϕϕϕ(X, t), ∀X ∈ Ωo

s , t ≥ 0.

The complete set of governing equations for finite strain solid dynamics is presented. This for-
mulation incorporates the local conservation laws of linear and angular momentum, as well as
the kinematic relationships necessary to describe large deformations. Additionally, a constitu-
tive model is used to complete the system of equations by relating stresses to strains within the
continuum. The governing equations for finite strain solid dynamics are as follows:

ρo
s

∂2uuus

∂t2 −∇∇∇o · {FFFSSS′}+∇∇∇o · {ps JFFF−T} = fff o
s in Ωo

s , t ∈ ]0, T[ , (1)

ps

κs
+

dG
dJ

= 0 in Ωo
s , t ∈ ]0, T[ , (2)

SSS′ − 2
∂W
∂CCC

= 000 in Ωo
s , t ∈ ]0, T[ , (3)

uuus = uuus,D on Γo
s,D , t ∈ ]0, T[ , (4)

{FFFSSS′ − ps JFFF−T}NNNs = ttto
s,N on Γo

s,N , t ∈ ]0, T[ , (5)

−{FFFSSS′ − ps JFFF−T}NNNI = ttto
f→s on Γo

I , t ∈ ]0, T[ , (6)
uuus = uuuo

s in Ωo
s , t = 0, (7)

vs = vo
s in Ωo

s , t = 0. (8)

Let us explain, one by one, the different equations and variables that appear in the system. Eq. (1)
is the local form of the conservation of linear momentum, where ρo

s is the reference density, uuus is
the displacement field, FFF = ∇∇∇ox the deformation gradient tensor, being∇∇∇o the material gradient
operator, SSS′ the deviatoric part of the PK2 stress tensor, ps the pressure field, J = det FFF > 0 the Ja-
cobian of the deformation and fff o

s the body forces at the reference configuration. Eq. (2) represents
the volumetric constitutive equation, which enforces the incompressibility constraint as the bulk
modulus κs → ∞, and where G(J) is a function that depends on the volumetric component of the
strain energy model. In this work, we adopt the Simo-Taylor law [44], defined as

G(J) =
1
4
(

J2 − 1− 2 log J
)

,
dG
dJ

(J) =
1
2

(
J − 1

J

)
.

Finally, Eq. (3) represents the deviatoric constitutive equation, which enables us to relate the
displacement field to the deviatoric PK2 stress tensor through the deviatoric component of the
strain energy function W(CCC). In this work, we limit our scope to a neo-Hookean material model
[45], which is defined as

W(CCC) =
µs

2

(
J−

2
3 tr CCC− 3

)
,

∂W
∂CCC

=
µs

2
J−

2
3

{
III − 1

3
(tr CCC)CCC−1

}
,

where µs is the shear modulus, CCC = FFFTFFF is the right Cauchy-Green tensor, III the second order
identity tensor and tr CCC = CCC : III is the trace of CCC.

6



With regards to the boundary conditions (4)-(6), uuus,D is a prescribed value for the displacements
on the Dirichlet boundary, ttto

s,N is a prescribed value for the tractions on the Neumann boundary
and ttto

f→s are the tractions coming from the fluid side to be integrated on the interface boundary
at the reference configuration. Vector NNNI is the unit normal pointing from the fluid side to the
solid one on the interface boundary Γo

I . The governing equations must be supplied with initial
conditions for displacements (7) and velocities (8) in Ωo

s , with uuuo
s and vo

s given.
In this study, we employ three distinct formulations. The first, which serves as the irreducible

formulation, is the displacement-based formulation (hereafter referred to as the uuu formulation).
This formulation exhibits issues with volumetric and shear locking, and its constitutive matrix
approaches singularity in the incompressible limit [18]. To mitigate these challenges and achieve
high accuracy in the stress field, this work examines two stabilized mixed formulations. On the
one hand, we consider the mixed two-field uuup formulation presented in [36], which incorporates
the pressure field as an additional primary variable relative to the classical displacement-based
formulation, thereby facilitating the enforcement of the incompressibility constraint. On the other
hand, the novel mixed three-field uuupSSS′ formulation introduced in [38] includes the deviatoric PK2
stress tensor as an additional unknown in the problem. The ultimate objective is to develop a FE
methodology capable of handling problems that exhibit incompressible behavior while ensuring
a high degree of accuracy in the stress field.

We will provide a brief overview of the three formulations. For a more in-depth understanding
of each, we refer to the studies in which they were originally developed and validated.

3.2 The irreducible uuu formulation

3.2.1 Governing equations

The first formulation we consider is the irreducible uuu formulation. The problem consists of finding
a displacement uuus : Ds → Rd such that

ρo
s

∂2uuus

∂t2 −∇∇∇o · {FFFSSS} = fff o
s in Ωo

s , t ∈ ]0, T[ , (9)

where SSS = SSS′− ps JCCC−1 is the PK2 stress tensor and FFF and SSS are functions of the displacement field.
The problem must be supplied with the already-defined boundary and initial conditions.

3.2.2 Weak form

Let us consider the notation introduced in Subsection 2.2. Let Us be the proper functional space
where displacement solution is well-defined. We denote by U 0

s functions in Us which vanish on
the Dirichlet boundary Γo

s,D. The variational statement of the problem is derived by testing Eq. (9)
against arbitrary test functions ŭuus ∈ U 0

s . The weak form of the problem reads: find uuus : ]0, T[→ Us
such that initial and Dirichlet boundary conditions are satisfied and〈

ŭuus, ρo
s

∂2uuus

∂t2

〉
+Auuu (ŭuus, uuus) = F (ŭuus) ∀ŭuus ∈ U 0

s ,

where Auuu (ŭuus, uuus) is a semilinear form on U 0
s × Us and F (ŭuus) is a linear form on U 0

s defined as
follows:

Auuu (ŭuus, uuus) := ⟨∇∇∇oŭuus, FFFSSS⟩ , F (ŭuus) := ⟨ŭuus, fff o
s ⟩+

〈
ŭuus, ttto

s,N
〉

Γo
s,N
− ⟨ŭuus, ttto

f→s⟩Γo
I

.
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3.2.3 Time discretization, linearization and Galerkin spatial approximation

Let us consider the BDF2 time discretizaton scheme presented in Subsection 2.1 to approximate the
second time derivative. To solve the problem, the system must be linearized to obtain a bilinear
operator that computes a correction for the displacement δuδuδus for a given guess of the solution
at time tn+1, which we denote by uuus. To simplify the notation, iteration counters will be omitted.
Applying a Newton-Raphson scheme to linearize the problem, along with a BDF2 scheme for time
discretization, yields the following form of the problem: Given uuus as the solution at time tn+1 and
the previous iteration, find a correction δuδuδus ∈ U 0

s such that〈
ŭuus,

2
δt2 ρo

s δuδuδus

〉
+ Buuu (uuus; ŭuus, δuδuδus) = F (ŭuus)−Auuu (ŭuus, uuus)−

〈
ŭuus, ρo

s
δ2

2uuus

δt2

〉
∀ŭuus ∈ U 0

s ,

where Buuu (uuus; ŭuus, δuδuδus) is a bilinear form defined on U 0
s ×U 0

s as

Buuu (uuus; ŭuus, δuδuδus) = ⟨∇∇∇oŭuus,∇∇∇oδuδuδusSSS⟩+
〈

FFFT∇∇∇oŭuus, C :
(

FFFT∇∇∇oδuδuδus

)〉
,

where C = 2 ∂SSS
∂CCC is the fourth order tangent constitutive tensor.

We proceed by considering the Galerkin spatial approximation presented in Subsection 2.3.
The discrete version of the problem is: Given uuus,h as the solution at time tn+1 and the previous
iteration, find a correction δuδuδus,h ∈ U 0

s,h such that〈
ŭuus,h,

2
δt2 ρo

s δuδuδus,h

〉
+Buuu (uuus; ŭuus,h, δuδuδus,h) = F (ŭuus,h)−Auuu (ŭuus,h, uuus,h)−

〈
ŭuus,h, ρo

s
δ2

2uuus,h

δt2

〉
∀ŭuus,h ∈ U 0

s,h.

3.3 The mixed two-field uuup formulation

3.3.1 Governing equations

As a second formulation, we present the stabilized mixed two-field uuup formulation, which is in-
troduced to deal with nearly and fully incompressible materials. The problem consists of finding
a displacement uuus : Ds → Rd and a pressure ps : Ds → R such that

ρo
s

∂2uuus

∂t2 −∇∇∇o · {FFFSSS′}+∇∇∇o · {ps JFFF−T} = fff o
s in Ωo

s , t ∈ ]0, T[ , (10)

ps

κs
+

dG
dJ

= 0 in Ωo
s , t ∈ ]0, T[ , (11)

where FFF, SSS′, J and dG
dJ are functions of the displacement field. The problem must be supplied with

the already-defined boundary and initial conditions.

3.3.2 Weak form

Let us consider the notation introduced in Subsection 2.2 and the spaces defined for the displace-
ment field in Subsection 3.2. Let Ps be the proper functional space where the pressure solution is
well-defined. We shall be interested also in the spacesWs := Us×Ps andW0

s := U 0
s ×Ps. The vari-

ational statement of the problem is derived by testing Eqs. (10)-(11) against arbitrary test functions
ŬUUs := [ŭuus, p̆s]T , p̆s ∈ Ps. The weak form of the problem reads: find UUUs := [uuus, ps]

T : ]0, T[ → Ws
such that initial and Dirichlet boundary conditions are satisfied and〈

ŭuus, ρo
s

∂2uuus

∂t2

〉
+Auuup

(
ŬUUs,UUUs

)
= F

(
ŬUUs

)
∀ŬUUs ∈ W0

s ,
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where Auuup

(
ŬUUs,UUUs

)
is a semilinear form onW0

s ×Ws defined as follows:

Auuup

(
ŬUUs,UUUs

)
:=

〈
∇∇∇oŭuus, FFFSSS′

〉
−

〈
∇∇∇oŭuus, ps JFFF−T

〉
+

〈
p̆s,

dG
dJ

〉
+

〈
p̆s,

ps

κs

〉
.

3.3.3 Time discretization, linearization and Galerkin spatial approximation

To solve the problem, the system must be linearized to obtain a bilinear operator that computes
a correction δUδUδUs := [δuδuδus, δps]

T for a given guess of the solution at time tn+1, which we denote by
UUUs. To simplify the notation, iteration counters will be omitted. Applying a Newton-Raphson
scheme to linearize the problem, along with a BDF2 scheme for time discretization, yields the
following form of the problem: Given UUUs as the solution at time tn+1 and the previous iteration,
find a correction δUδUδUs ∈ W0

s such that〈
ŭuus,

2
δt2 ρo

s δuδuδus

〉
+ Buuup

(
UUUs; ŬUUs, δUδUδUs

)
= F

(
ŬUUs

)
−Auuup

(
ŬUUs,UUUs

)
−

〈
ŭuus, ρo

s
δ2

2uuus

δt2

〉
∀ŬUUs ∈ W0

s ,

where Buuup

(
UUUs; ŬUUs, δUδUδUs

)
is a bilinear form defined onW0

s ×W0
s as

Buuup

(
UUUs; ŬUUs, δUδUδUs

)
=

〈
∇∇∇oŭuus,∇∇∇oδuδuδusSSS′

〉
+

〈
FFFT∇∇∇oŭuus, C′ :

(
FFFT∇∇∇oδuδuδus

)〉
−

〈
∇∇∇oŭuus, ps J

(
∇∇∇oδuδuδus : FFF−1

)
FFF−T

〉
+

〈
∇∇∇oŭuus, ps J

(
FFF−1∇∇∇oδuδuδusFFF−1

)T
〉
+

〈
∇∇∇oŭuus, δps JFFF−T

〉
+

〈
p̆s, g (J)∇∇∇oδuδuδus : FFF−T

〉
+

〈
p̆s,

δps

κs

〉
,

where C′ = 2 ∂SSS′
∂CCC is the deviatoric part of the fourth order tangent constitutive tensor and g (J) is a

function coming from the linearization of dG
dJ ; for the Simo-Taylor law presented in Subsection 3.1

this term is:

g (J) =
1
2

(
J +

1
J

)
.

Let us consider now the Galerkin spatial approximation presented in Subsection 2.3. The dis-
crete version of the problem is: Given UUUs,h as the solution at time tn+1 and the previous iteration,
find a correction δUδUδUs,h ∈ W0

s,h such that〈
ŭuus,h,

2
δt2 ρo

s δuδuδus,h

〉
+ Buuup

(
UUUs,h; ŬUUs,h, δUδUδUs,h

)
= F

(
ŬUUs,h

)
−Auuup

(
ŬUUs,h,UUUs,h

)
−

〈
ŭuus,h, ρo

s
δ2

2uuus,h

δt2

〉
∀ŬUUs,h ∈ W0

s,h.

3.3.4 Stabilized formulation

According to the VMS framework explained in Subsection 2.4, the stabilized problem with S-OSGS
is defined as〈

ŭuus,h,
2

δt2 ρo
s δuδuδus,h

〉
+ Buuup

(
UUUs,h; ŬUUs,h, δUδUδUs,h

)
+∑K

〈
L ∗

uuup(UUUs,h; ŬUUs,h), τττKΠ⊥h
[

f −Auuup(UUUs,h)−Luuup(UUUs,h; δUδUδUs,h)]
]〉

K

= F
(

ŬUUs,h

)
−Auuup

(
ŬUUs,h,UUUs,h

)
−

〈
ŭuus,h, ρo

s
δ2

2uuus,h

δt2

〉
∀ŬUUs,h ∈ W0

s,h.
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τττK is taken as a diagonal matrix of stabilization parameters, τττK = diag (τuuuIIId, 0), with IIId the iden-
tity on vectors of Rd and the parameter τuuu defined as follows:

τuuu = c1
h2

K
2µs

,

where c1 is an algorithmic parameter that we take as c1 = 1. The split operators we need to define
to have control on the pressure field are

Auuup(UUUs) =

[
∇∇∇o ·

{
ps JFFF−T}
0

]
, L ∗

uuup(UUUs; ŬUUs) =

[
−∇∇∇o ·

{
p̆sg (J) FFF−T}

0

]
Luuup(UUUs; δUδUδUs) =

[
∇∇∇o ·

{
−ps J

(
∇∇∇oδuδuδus : FFF−1) FFF−T + ps J

(
FFF−1∇∇∇oδuδuδusFFF−1)T

+ δps JFFF−T
}

0

]
.

3.4 The mixed three-field uuupSSS′ formulation

3.4.1 Governing equations

The last formulation we consider is the stabilized mixed three-field uuupSSS′ formulation. The ob-
jective of this formulation is the definition of a general framework, which includes the mixed uuup
formulation presented in Subsection 3.3 to be able to tackle the incompressibility limit and in-
troduces SSS′ as primary unknown to obtain a higher accuracy in the computation of stresses in
finite strain problems. The problem consists of finding a displacement uuus : Ds → Rd, a pressure
ps : Ds → R and a deviatoric PK2 stress SSS′ : Ds → Rd ⊗Rd such that

ρo
s

∂2uuus

∂t2 −∇∇∇o · {FFFSSS′}+∇∇∇o · {ps JFFF−T} = fff o
s in Ωo

s , t ∈ ]0, T[ , (12)

ps

κs
+

dG
dJ

= 0 in Ωo
s , t ∈ ]0, T[ , (13)

SSS′ − 2
∂W
∂CCC

= 000 in Ωo
s , t ∈ ]0, T[ , (14)

where FFF, J and dG
dJ are functions of the displacement field. The problem must be supplied with the

already-defined boundary and initial conditions.

3.4.2 Weak form

Let us consider the spaces defined for both the displacement and pressure fields in Subsection 3.3.
Let Ss be the proper functional space where deviatoric PK2 stress solution is well-defined. We
shall be interested also in the spacesWs := Us×Ps×Ss andW0

s := U 0
s ×Ps×Ss. The variational

statement of the problem is derived by testing Eqs. (12)-(14) against arbitrary test functions ŬUUs :=
[ŭuus, p̆s, S̆SS

′
]T , S̆SS

′ ∈ Ss. The weak form of the problem reads: find UUUs := [uuus, ps, SSS′]T : ]0, T[ → Ws
such that initial and Dirichlet boundary conditions are satisfied and〈

ŭuus, ρo
s

∂2uuus

∂t2

〉
+AuuupSSS′

(
ŬUUs,UUUs

)
= F

(
ŬUUs

)
∀ŬUUs ∈ W0

s ,

where AuuupSSS′
(

ŬUUs,UUUs

)
is a semilinear form onW0

s ×Ws defined as follows:

AuuupSSS′
(

ŬUUs,UUUs

)
:=

〈
∇∇∇oŭuus, FFFSSS′

〉
−

〈
∇∇∇oŭuus, ps JFFF−T

〉
+

〈
p̆s,

dG
dJ

〉
+

〈
p̆s,

ps

κs

〉
−

〈
S̆SS
′
, 2

∂W
∂CCC

〉
+

〈
S̆SS
′
, SSS′

〉
.
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3.4.3 Time discretization, linearization and Galerkin spatial approximation

To solve the problem, the system must be linearized to obtain a bilinear operator that computes a
correction δUδUδUs := [δuδuδus, δps, δSδSδS′]T for a given guess of the solution at time tn+1, which we denote
by UUUs. As before, iteration counters will be omitted. Applying a Newton-Raphson scheme to
linearize the problem, along with a BDF2 scheme for time discretization, yields the following form
of the problem: Given UUUs as the solution at time tn+1 and the previous iteration, find a correction
δUδUδUs ∈ W0

s such that〈
ŭuus,

2
δt2 ρo

s δuδuδus

〉
+ BuuupSSS′

(
UUUs; ŬUUs, δUδUδUs

)
= F

(
ŬUUs

)
−AuuupSSS′

(
ŬUUs,UUUs

)
−

〈
ŭuus, ρo

s
δ2

2uuus

δt2

〉
∀ŬUUs ∈ W0

s ,

where BuuupSSS′
(

UUUs; ŬUUs, δUδUδUs

)
is a bilinear form defined onW0

s ×W0
s as

BuuupSSS′
(

UUUs; ŬUUs, δUδUδUs

)
=

〈
∇∇∇oŭuus,∇∇∇oδuδuδusSSS′

〉
+

〈
∇∇∇oŭuus, FFFδSδSδS′

〉
−

〈
∇∇∇oŭuus, ps J

(
∇∇∇oδuδuδus : FFF−1

)
FFF−T

〉
+

〈
∇∇∇oŭuus, ps J

(
FFF−1∇∇∇oδuδuδusFFF−1

)T
〉
+

〈
∇∇∇oŭuus, δps JFFF−T

〉
+

〈
p̆s, g (J)∇∇∇oδuδuδus : FFF−T

〉
+

〈
p̆s,

δps

κs

〉
−

〈
S̆SS
′
, C′ :

(
FFFT∇∇∇oδuδuδus

)〉
+

〈
S̆SS
′
, δSδSδS′

〉
.

Note that, in the way we have written the equations, S̆SS
′
is in fact a strain, not a stress. However, to

simplify the writing we consider S̆SS
′ ∈ Ss.

The Galerkin spatial approximation presented in Subsection 2.3. The discrete version of the
problem is: Given UUUs,h as the solution at time tn+1 and the previous iteration, find a correction
δUδUδUs,h ∈ W0

s,h such that〈
ŭuus,h,

2
δt2 ρo

s δuδuδus,h

〉
+ BuuupSSS′

(
UUUs; ŬUUs,h, δUδUδUs,h

)
= F

(
ŬUUs,h

)
−AuuupSSS′

(
ŬUUs,h,UUUs,h

)
−

〈
ŭuus,h, ρo

s
δ2

2uuus,h

δt2

〉
∀ŬUUs,h ∈ W0

s,h.

3.4.4 Stabilized formulation

Following the VMS framework explained in Subsection 2.4, the stabilized problem with S-OSGS
is 〈

ŭuus,h,
2

δt2 ρo
s δuδuδus,h

〉
+ BuuupSSS′

(
UUUs,h; ŬUUs,h, δUδUδUs,h

)
+∑K

〈
L ∗

uuupSSS′(UUUs,h; ŬUUs,h), τττKΠ⊥h
[

f −AuuupSSS′(UUUs,h)−LuuupSSS′(UUUs,h; δUδUδUs,h)]
]〉

K

= F
(

ŬUUs,h

)
−AuuupSSS′

(
ŬUUs,h,UUUs,h

)
−

〈
ŭuus,h, ρo

s
δ2

2uuus,h

δt2

〉
∀ŬUUs,h ∈ W0

s,h.

τττK is taken again as a diagonal matrix of stabilization parameters, τττK = diag (τuuuIIId, 0, τSSS′ IIId×d),
with IIId×d the identity on second order tensors and parameters τuuu and τSSS′ defined as

τuuu = c2
h2

K
2µs

and τSSS′ = c3, (15)
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where c2 and c3 are algorithmic parameters taken as c1 = 1, c3 = 0.1. The split operators we need
to define to have control on both the displacement and the pressure field are

AuuupSSS′(UUUs) =

∇∇∇o ·
{

ps JFFF−T}
0

−2 ∂W
∂CCC

 , L ∗
uuupSSS′(UUUs; ŬUUs) =

−∇∇∇o ·
{

p̆sg (J) FFF−T}
0

FFFT∇∇∇oŭuus


LuuupSSS′(UUUs; δUδUδUs) =

∇∇∇o ·
{
−ps J

(
∇∇∇oδuδuδus : FFF−1) FFF−T + ps J

(
FFF−1∇∇∇oδuδuδusFFF−1)T

+ δps JFFF−T
}

0
−C′ :

(
FFFT∇∇∇oδuδuδus

)
 . (16)

4 Fluid flow problem

This section introduces the different formulations employed to approximate the fluid dynamics
problem considered in the FSI problems explored in this work.

First, we introduce the ALE framework for the fluid flow equations. This framework allows
the displacement of the fluid mesh to properly capture the movement of the solid (solved using
a Lagrangian formulation), which influences the fluid flow (solved using an ALE formulation).
Second, the continuous Navier-Stokes equations are presented to obtain the two formulations
used in our computations.

4.1 ALE formulation of the fluid flow equations

Let Ωf(t) be the domain where the fluid flows during a time interval ]0, T[, with boundary Γf(t) :=
∂Ωf(t) = Γf,N(t) ∪ Γf,D(t), where Dirichlet boundary conditions are prescribed on Γf,D(t) and
Neumann conditions on Γf,N(t). Part of these boundaries may be moving, and we call it Γmov(t).
This moving part of Γf(t) may correspond to the boundary of a moving solid immersed in the
fluid. This boundary does not need to be connected, as is the case, for instance, with solids moving
within the fluid. Also, the fixed part of Γf(t) is denoted by Γfix, specifically defined as Γfix =
Γf(t) \ Γmov(t).

To address the time dependence of Ωf(t), we adopt the ALE framework. This incorporates
the particular feature of a variable definition for the domain velocity. For defining properly the
domain velocity let us introduce some notation.

Let χχχt be a family of invertible mappings which for all t ∈ ]0, T[ map a point X ∈ Ωf(0) to a
point x = χχχt(X) ∈ Ωf(t), with χχχ0 = I, the identity. If χχχt is given by the motion of the particles,
the resulting formulation would be Lagrangian, while if χχχt = I for all t, Ωf(t) = Ωf(0) and the
formulation would be Eulerian.

Let now t′ ∈ ]0, T[, with t′ ≤ t, and consider the mapping

χχχt,t′ : Ωf(t′) −→ Ωf(t)

x′ 7→ x = χχχt ◦χχχ−1
t′ (x′).

Let Df = {(x, t)|x ∈ Ωf(t), 0 < t < T} be the space-time domain where the fluid flow problem is
defined. Given a function f : Df −→ R we define

∂ f
∂t

∣∣∣∣
x′
(x, t) :=

∂( f ◦χχχt,t′)

∂t
(x′, t), x ∈ Ωf(t), x′ ∈ Ωf(t′). (17)

In particular, the domain velocity taking as a reference the coordinates of Ωf(t′) is given by

vdom :=
∂x
∂t

∣∣∣∣
x′
(x, t).
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Let vdom be the velocity considered to the points of the fluid domain, which needs to match
the velocity of Γf(t). In other words, it is the velocity that matches the velocity of the moving
boundary Γmov(t) and vanishes on Γfix.

Therefore, considering the ALE framework, the only modification with respect to the purely
Eulerian formulation is to replace the transport velocity vf of the advective term of the Navier-
Stokes equations by vc := vf − vdom. The domain velocity vdom is computed from the displace-
ments of the points in Ωf(t), udom. These displacements are taken as FE functions in Ωf(t), which
are extensions of displacements on Γf(t). Therefore, to extend the interface displacement to the
interior of the fluid domain a mesh equation must be solved. In this work, the approach follows
the method described in [46], treating the mesh as a fictitious elastic body subjected to prescribed
displacements at the designated moving boundaries. The mechanical properties of each mesh
element are carefully chosen to minimize both deformation and distortion of the mesh elements.

4.2 The continuum problem statement

Let us now present the equations for the Newtonian incompressible fluid flow. The continuum
Navier-Stokes problem is defined in this case by the following system of equations:

ρf
∂vf

∂t
+ ρfvc · ∇vf −∇ · σσσf +∇pf = fff f in Ωf(t), t ∈ ]0, T[ , (18)

∇ · vf = 0 in Ωf(t), t ∈ ]0, T[ , (19)
σσσf − 2µf∇symvf = 0 in Ωf(t), t ∈ ]0, T[ , (20)

vf = vf,D on Γf,D(t), t ∈ ]0, T[ , (21)
nf · σσσf = tf,N on Γf,N(t), t ∈ ]0, T[ , (22)

vf = vs→f on ΓI(t), t ∈ ]0, T[ , (23)

vf = v0
f in Ωf(0), t = 0, (24)

where Eq. (18) is the balance of linear momentum and Eq. (19) the incompressibility constraint. In
these equations, vf is the velocity field, pf the pressure, fff f the vector of body forces, ρf the density
of the fluid and µf its dynamic viscosity. The operator ∇ is the spatial gradient, and ∇sym is the
symmetric gradient operator. In this case ∇symvf = 1

2

(
∇vf +∇Tvf

)
. Eq. (20) relates the stress

tensor to the symmetric gradient of the velocity. Regarding the boundary conditions (21)-(23), vf,D
represents the prescribed velocity on the Dirichlet boundary, tf,N denotes the prescribed traction
on the Neumann boundary, and vs→f corresponds to the velocity field provided by the solid at the
interface boundary. The governing equations must be supplied with an initial condition for the
velocity field (24) in Ωf(0), with v0

f given.
In this work, two different formulations for simulating Newtonian incompressible flow are

considered, and both are presented in the following subsections. First, the stabilized two-field
vp formulation proposed in [8] is briefly introduced. Further details on the development of this
approach can be found in [19]. Second, the three-field vpσσσ stabilized formulation, extensively
explained in [22], is described. Details about the time-dependent subgrid scales can be found in
[47] and [48] (for the vp formulation), as well as in [43] regarding the vpσσσ formulation. It is worth
noting that these formulations were developed and validated in previous works. The purpose of
the following subsections is to present the resulting numerical formulation.
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4.3 The mixed two-field vp formulation

4.3.1 Governing equations

Let us now present the stabilized mixed vp formulation to deal with incompressible Newtonian
fluid flows. The problem consists of finding a velocity vf : Df → Rd and a pressure pf : Df → R

such that

ρf
∂vf

∂t
+ ρfvc · ∇vf −∇ · {2µf∇symvf}+∇pf = fff f in Ωf(t), t ∈ ]0, T[ , (25)

∇ · vf = 0 in Ωf(t), t ∈ ]0, T[ . (26)

Again, the problem must be supplied with the already-defined boundary and initial condi-
tions.

4.3.2 Weak form

Let Vf =
[
H1(Ωf)

]d and Pf = L2(Ωf) be, respectively, the proper functional spaces where velocity
and pressure solutions are well-defined. We denote by V0

f the space in which the functions defined
in Vf vanish on the Dirichlet boundary Γf,D. We will also consider the spacesWf := Vf × Pf and
W0

f := V0
f ×Pf. The variational form of the problem is obtained by testing the system presented

previously in Eqs. (25-26) against arbitrary test functions V̆f := [v̆f, p̆f]
T , v̆f ∈ V0

f and p̆f ∈ Pf.
Therefore, the weak form can be formulated as follows: find Vf := [vf, pf]

T : ]0, T[→Wf such that
both, initial and Dirichlet boundary conditions are satisfied, and also〈

v̆f, ρf
∂vf

∂t

〉
+Avp

(
vf; V̆f, Vf

)
= F

(
V̆f

)
∀ V̆f ∈ W0

f ,

where, for a fixed v̂, Avp
(
v̂; V̆f, Vf

)
is a bilinear form defined onW0

f ×Wf as

Avp
(
v̂; V̆f, Vf

)
:= ⟨v̆f, ρfv̂ · ∇vf⟩+ 2µf (∇v̆f,∇symvf)− (∇ · v̆f, pf) + ( p̆f,∇ · vf) .

and F
(
V̆f

)
is a linear form defined onW0

f as

F
(
V̆f

)
:= ⟨v̆f, fff f⟩+ ⟨v̆f, tf,N⟩Γf,N

. (27)

4.3.3 Time discretization, linearization and Galerkin spatial approximation

Regarding the time discretization, the BDF2 is also used to approximate the first order time deriva-
tive in this formulation, as it was introduced in Section 2.1.

We now turn our focus to the treatment of nonlinearity in the Navier-Stokes problem. This
presents only one source of nonlinearity: the convective term. For simplicity, we will consider a
fixed-point iterative scheme to deal with it. In particular, v̂ will be taken as the velocity obtained
from the previous iteration of the fixed-point method.

Finally, the Galerkin spatial discretization can be expressed as: for each time step, find Vf,h :=
[vf,h, pf,h]

T ∈ Wf,h such that initial and Dirichlet boundary conditions are satisfied and〈
v̆f,h, ρf

δ2vf,h

δt

〉
+Avp

(
v̂h; V̆f,h, Vf,h

)
= F

(
V̆f,h

)
∀ V̆f,h ∈ W0

f,h.
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4.3.4 Stabilized formulation

Concerning the stabilization employed, we consider the SGSs to be time-dependent. This could
also be done for the solid problem, although we have found that it is much more relevant in the
problem for the fluid. In this case, the SGSs are the solutions of the next set of equations:

ρf
∂ṽ1

∂t
+ τ−1

v ṽ1 = −Π⊥h [ρfvc,h · ∇vf,h],

ρf
∂ṽ2

∂t
+ τ−1

v ṽ2 = −Π⊥h [∇pf,h],

p̃ = −τpΠ⊥h [∇ · vf,h],

where τv and τp are coefficients coming from a Fourier analysis of the problem for the SGSs. In
this work, we use the stabilization parameters proposed in [19] as

τ−1
v = c1

µf

h2
K
+ c2

ρf|v̂c,h|
hK

and τp = τ−1
v h2

K, (28)

where |v̂c,h| is the Euclidean norm of a guess for vc,h and c1 = 4 and c2 = 2 are the algorithmic
parameters used in the numerical examples for linear elements. The equations for the SGSs can
be integrated in time using the same scheme as for the FE scales.

The VMS stabilized vp formulation of the problem for a discrete Galerkin approximation and
with a BDF2 time discretization reads: for each time step, find Vf,h ∈ Wf,h such that initial and
Dirichlet boundary conditions are satisfied and〈

v̆f,h, ρf
δ2vf,h

δt

〉
+Avp

(
v̂h; V̆f,h, Vf,h

)
+ ∑

K
⟨−ρfv̂c,h · ∇v̆f,h, ṽ1⟩K + ∑

K
⟨−∇ p̆f,h, ṽ2⟩K

+∑
K
⟨−∇ · v̆f,h, p̃⟩K = F

(
V̆f,h

)
∀ V̆f,h ∈ W0

f,h.

This stabilized ALE formulation for the linear convection-diffusion equation using also BDF2 as
time integrator is analyzed in [49]. Let us also remark that if discontinuous pressure interpolations
are used (which is not our case), terms involving SGSs on the element boundaries need to be
introduced [50].

4.4 The mixed three-field vpσσσ formulation

4.4.1 Governing equations

Now we present the stabilized mixed vpσσσ formulation for solving the Navier-Stokes equations.
This formulation adds a new variable to the classical approach: the deviatoric component of the
stress field σσσf. The three-field problem is written as follows: find a velocity vf : Df −→ Rd, a
pressure pf : Df −→ R and the deviatoric component of the stress field σσσf : Df −→ Rd ⊗Rd, such
that

ρf
∂vf

∂t
+ ρfvc · ∇vf −∇ · σσσf +∇pf = fff f in Ωf(t), t ∈]0, T[, (29)

∇ · vf = 0 in Ωf(t), t ∈]0, T[, (30)
1

2µf
σσσf −∇symvf = 0 in Ωf(t), t ∈]0, T[. (31)

As always, the problem must be supplied with the already-defined boundary and initial con-
ditions.
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4.4.2 Weak form

Let us consider the notation introduced in Subsection 2.2 and the spaces defined for both the veloc-
ity and pressure fields in Subsection 4.3. Let Yf ⊂ L2(Ωf)

d×d be the proper functional space where
the deviatoric stress solution is well-defined. We will also consider the spacesWf := Vf ×Pf ×Yf
andW0

f := V0
f ×Pf × Yf. As in the classical approach, the variational form of the problem is ob-

tained by testing the system presented previously in Eqs. (29-31) against arbitrary test functions
V̆f := [v̆f, p̆f, σ̆σσf]

T, σ̆σσf ∈ Yf. The weak form of the problem consists of finding Vf := [vf, pf, σσσf]
T :

]0, T[−→ Wf such that the initial and boundary conditions are satisfied and〈
v̆f, ρf

∂vf

∂t

〉
+Avpσσσ

(
vf; V̆f, Vf

)
= F

(
V̆f

)
∀ V̆f ∈ W0

f ,

where, for a fixed v̂, Avpσσσ

(
v̂; V̆f, Vf

)
is a bilinear form defined onWf ×W0

f as

Avpσσσ

(
v̂; V̆f, Vf

)
:= ⟨v̆f, ρfv̂ · ∇vf⟩+ (∇v̆f, σσσf)− (∇ · v̆f, pf) + ( p̆f,∇ · vf) +

1
2µf

(σ̆σσf, σσσf)− (σ̆σσf,∇symvf) ,

and F
(
V̆f

)
is again given by Eq. (27).

4.4.3 Time discretization, linearization and Galerkin spatial approximation

Regarding time discretization, we employ a BDF2 scheme. For the linearization, we use the same
fixed-point scheme as in the vp approach, detailed in Section 4.3.3. The Galerkin spatial discretiza-
tion can be expressed as: for each time step, find Vf,h := [vf,h, pf,h, σσσf,h]

T ∈ Wf,h such that initial
and Dirichlet boundary conditions are satisfied and〈

v̆f,h, ρf
δ2vf,h

δt

〉
+Avpσσσ

(
v̂h; V̆f,h, Vf,h

)
= F

(
V̆f,h

)
∀ V̆f,h ∈ W0

f,h.

4.4.4 Stabilized formulation

As in the vp formulation, we consider time-dependent SGSs. These are the solutions of the next
set of equations. Note that for this formulation, in total we have five subgrid scales, and three of
these are time-dependent:

ρf
∂ṽ1

∂t
+ τ−1

v ṽ1 = −Π⊥h [ρfvc,h · ∇vf,h],

ρf
∂ṽ2

∂t
+ τ−1

v ṽ2 = −Π⊥h [∇pf,h],

ρf
∂ṽ3

∂t
+ τ−1

v ṽ3 = Π⊥h [∇ · σσσf,h],

p̃ = −τpΠ⊥h [∇ · vf,h],

σ̃σσ = τσσσΠ⊥h

[
− 1

2µf
σσσf,h +∇symvf,h

]
= τσσσΠ⊥h [∇symvf,h]

where τv, τp and τσσσ are coefficients coming from a Fourier analysis of the problem for the SGSs. In
this work, we use the stabilization parameters proposed in [22], with τv and τp given by Eq. (28)
and

τσσσ = c3
1

2µf

where c3 = 0.1 is the algorithmic parameter used in the numerical examples for linear elements.
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The VMS stabilized vpσσσ formulation of the problem for a discrete Galerkin approximation and
with a BDF2 time discretization reads: for each time step, find Vf,h ∈ Wf,h such that initial and
Dirichlet boundary conditions are satisfied and〈

v̆f,h, ρf
δ2vf,h

δt

〉
+Avp

(
v̂h; V̆f,h, Vf,h

)
+ ∑

K
⟨−ρfv̂c,h · ∇v̆f,h, ṽ1⟩K + ∑

K
⟨−∇ p̆f,h, ṽ2⟩K

+∑
K
⟨∇σ̆σσf,h, ṽ3⟩K + ∑

K
⟨−∇ · v̆f,h, p̃⟩K + ∑

K

〈
1

2µf
σ̆σσf,h +∇symv̆f,h, σ̃σσ

〉
K

= F
(
V̆f,h

)
∀ V̆f,h ∈ W0

f,h.

5 Fluid-Structure Interaction problem

In this section, we formally define the coupled problem and detail the partitioned scheme used to
solve the fully system of equations.

5.1 Domain and boundaries

First, we need to define the domains and subdomains considered in the FSI problem that we aim
to solve. Let Ω(t) represent the entire domain of the FSI problem, which is composed of a fluid
subdomain Ωf(t) and a solid subdomain Ωs(t). These two subdomains do not overlap, so that
Ω̄(t) = Ωf(t) ∪Ωs(t), where Ω̄(t) denotes the fully ”closed” domain, meaning it includes all
the boundaries. Additionally, Ω̊f(t) ∩ Ω̊s(t) = ∅, where Ω̊f(t) and Ω̊s(t) represents the ”open”
domains, excluding boundaries, as illustrated in Fig. 1. The subdomains have their own bound-
aries Γf(t) and Γs(t), and the interface between the two subdomains is ΓI(t). Its unit normal with
respect to the spatial configuration is denoted nnnI, pointing from the fluid side to the solid one.

Figure 1: Sketch of a general FSI problem.

5.2 Governing equations

Using the notation introduced in the previous sections, we can extend it to account for a moving
domain and incorporate the interaction between the subdomains. Therefore, the ful FSI problem
can be stated as follows:

ρo
s

∂2uuus

∂t2 −∇∇∇o · {FFFSSS′}+∇∇∇o · {ps JFFF−T} = fff o
s in Ωo

s , t ∈ ]0, T[ , (32)

ps

κs
+

dG
dJ

= 0 in Ωo
s , t ∈ ]0, T[ , (33)

SSS′ − 2
∂W
∂CCC

= 000 in Ωo
s , t ∈ ]0, T[ , (34)

uuus = uuus,D on Γo
s,D , t ∈ ]0, T[ , (35)
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{FFFSSS′ − ps JFFF−T}NNNs = ttto
s,N on Γo

s,N , t ∈ ]0, T[ , (36)

uuus = uuuo
s in Ωo

s , t = 0, (37)
vs = vo

s in Ωo
s , t = 0, (38)

ρf
∂vf

∂t
+ ρfvc · ∇vf −∇ · σσσf +∇pf = fff f in Ωf(t), t ∈ ]0, T[ , (39)

∇ · vf = 0 in Ωf(t), t ∈ ]0, T[ , (40)
1

2µf
σσσf −∇symvf = 0 in Ωf(t), t ∈ ]0, T[ , (41)

vf = vf,D on Γf,D(t), t ∈ ]0, T[ , (42)
nf · σσσf = tf,N on Γf,N(t), t ∈ ]0, T[ , (43)

vf = vo
f in Ωf(0), t = 0, (44)

−{FFFSSS′ − ps JFFF−T}NNNI = ttto
f→s on Γo

I , t ∈ ]0, T[ , (45)
vf = vs→f on ΓI(t), t ∈ ]0, T[ . (46)

The problem described is formulated in a monolithic manner, meaning that all unknowns are
solved simultaneously in a fully coupled approach.

Remark 5.1 It is important to emphasize that in Eq. (45), the tractions tttf→s are defined on the fluid side
and act on the solid in the current configuration. These tractions are computed in an ALE framework and
transferred to the solid domain, which operates in a TL framework. Therefore, they must be imposed as Neu-
mann boundary conditions integrated over the reference configuration. To properly apply the virtual work
principle within this framework, we must transform the surface integral from the current configuration to
the reference one:

⟨ŭuus, tttf→s⟩ΓI
= ⟨ŭuus, ttto

f→s⟩Γo
I

.

To properly apply the virtual work principle within this framework, we must transform the surface
integral from the current configuration to the reference one. The element surfaces are related by

nnnIdΓ = JFFF−TNNNIdΓo, (47)

where dΓ denotes a surface element on the current configuration , while dΓo denotes a surface element on
the reference configuration. Taking the dot product of both sides with the current normal vector nnnI, and
recalling that nnnI is a unit vector, we obtain a scalar relation between the surface elements:

dΓ = J
{

nnnT
I

(
FFF−TNNNI

)}
dΓo,

and substituting this expression into the surface integral on the current configuration, we get:

⟨ŭuus, tttf→s⟩ΓI
=

〈
ŭuus, J

{
nnnT

I

(
FFF−TNNNI

)}
tttf→s

〉
Γo

I

= ⟨ŭuus, ttto
f→s⟩Γo

I
.

From this expression, we can find out the transformed tractions ttto
f→s (which act in the current configu-

ration but are integrated over the reference surface) as:

ttto
f→s = J

{
nnnT

I

(
FFF−TNNNI

)}
tttf→s.

This definition ensures that the virtual work contributed by the fluid tractions is preserved under the
transformation, allowing the solid solver to correctly interpret and apply these tractions within its TL
framework. However, in a TL framework, the solid solver does not have direct access to the normal vector
nnnI in the current configuration, since all geometric quantities are defined in the reference configuration. For
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this reason, it is useful to return to Nanson’s formula (47) to express nnnI in terms of the known reference
normal vector NNNI. By normalizing both sides of Nanson’s relation and taking into account that both normal
vectors are unit vectors, we obtain:

nnnI =
JFFF−TNNNIdΓo

dΓ
=

JFFF−TNNNIdΓo

∥JFFF−TNNNIdΓo∥ =
FFF−TNNNI

∥FFF−TNNNI∥
,

where ∥ · ∥ is the Euclidean norm. Substituting this into the expression for ttto
f→s, we get:

ttto
f→s = J

{
nnnT

I

(
FFF−TNNNI

)}
tttf→s = J

(
FFF−TNNNI

)T (
FFF−TNNNI

)
∥FFF−TNNNI∥

tttf→s = J
∥FFF−TNNNI∥2

∥FFF−TNNNI∥
tttf→s = J∥FFF−TNNNI∥tttf→s.

This final expression only involves quantities defined in the reference configuration, making it fully
compatible with the TL framework used in the solid domain.

Remark 5.2 If, instead of using a TL framework, one were to formulate the solid problem in an Updated
Lagrangian (UL) framework, then the boundary integrals would naturally be carried out over the deformed
configuration. In such a case, it would be necessary to express all relevant quantities, including stresses
and normals, in terms of the current configuration. This requires transforming the PK2 stress tensor into
the Cauchy stress tensor, and computing the associated tractions using the unit normal vector with respect
to the deformed interface, denoted nnnI. The resulting traction vector on the interface would then be expressed
as:

{1
J

FFFSSS′FFFT − psIII}nnnI = tttf→s on ΓI(t), t ∈ ]0, T[ .

This expression naturally arises in UL frameworks, where stresses and virtual work are evaluated with
respect to the current configuration at each time step.

5.3 Partitioned scheme

Instead of solving the problem in its monolithic form, this work adopts a block-iterative coupling
approach, where the solid and fluid mechanics problems are solved sequentially (such as it was
performed in [15]). The details of the coupling approach considered are outlined:

1. We are using a strong coupling, meaning that block-iterations are performed to ensure conver-
gence to the monolithic problem solution. This is crucial to ensure proper interface coupling.

2. The coupling is of Dirichlet-Neumann type: the solid is solved using the loads provided by the
fluid in each iteration, and then the fluid is computed using the interface velocities obtained
from the solid.

3. We have considered a dynamic sub-relaxation scheme to minimize the amount of sub-iterations
necessary to achieve convergence, in particular we have employed an Aitken ∆2 relaxation
scheme [51]. The algorithm is initialized taking a constant relaxation parameter (usually 0.1)
in the two first coupling iterations. Some works suggest relaxing the displacement field in-
stead of the velocity field. However, based on our experience, relaxing only the velocity field
ensures that the interface used by the fluid solver for traction calculations aligns perfectly
with the interface displacements. Let us remark that several new techniques have been
developed over the last years to improve transmission conditions, such as quasi-Newton
methods [52, 53], domain decomposition techniques [54] or weak boundary transmission
conditions [55], which could also be applied to the current problem.

The coupling algorithm for solving the problem, based on the Dirichlet-Neumann iteration-
by-subdomain approach described earlier, is presented in Algorithm 1. Problems discretized only
in time are considered; the spatial approximation is done as previously described.
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Algorithm 1 FSI algorithm
n = 0; loop over the number of time steps.

n← n + 1.
k = 0; iterate until convergence.

k← k + 1 (block iteration counter omitted in the following).
• Solve the equations for the solid, taking into account the tractions coming from the fluid problem ttto

f→s.
At time tn, omitting the superscript n and the iteration counter for the unknowns, these equations are:

ρo
s

δ2
2uuus

δt2 −∇∇∇o · {FFFSSS′}+∇∇∇o · {ps JFFF−T} = fff o
s in Ωo

s ,

ps

κs
+

dG
dJ

= 0 in Ωo
s ,

SSS′ − 2
∂W
∂CCC

= 000 in Ωo
s ,

uuus = uuus,D on Γo
s,D,

{FFFSSS′ − ps JFFF−T}NNNs = ttto
s,N on Γo

s,N,

−{FFFSSS′ − ps JFFF−T}NNNI = ttto
f→s on Γo

I .

• Compute relaxed velocities on the interface boundary vs→f with an Aitken relaxation scheme from the
solid velocities vs evaluated on the interface boundary, vs =

δ2uuus
δt |ΓI .

• Compute the domain velocity in the fluid by solving the problem (see [46]):

−∇ · {C (Edom (xxx) , νdom) : ∇svdom} = 0 in Ωf(t
n),

vdom = vs→f on ΓI(tn),

vdom = 0 on Γf(t
n) \ ΓI(tn),

where C is the constitutive fourth order tensor in linear elasticity, Edom (xxx) is the Young’s modulus of the
mesh computed at each node according to [46] and νdom = 0.065 is the Poisson coefficient of the mesh.

• Solve the ALE equations for the fluid, taking into account the mesh velocity vdom, vc = vf − vdom and
using the interface velocity vs→f. The equations to be solved at tn are:

ρf
δ2vf
δt

+ ρfvc · ∇vf −∇ · σσσf +∇pf = fff f in Ωf(t
n),

∇ · vf = 0 in Ωf(t
n),

1
2µf

σσσf −∇symvf = 0 in Ωf(t
n),

vf = vf,D on Γf,D(t
n),

nf · σσσf = tf,N on Γf,N(tn),

vf = vs→f on ΓI(tn),

• Check convergence and update unknowns. When transmission conditions are satisfied on the interface
boundary up to a tolerance, the coupling iterative loop ends.

End block-iterative loop.
End loop over the number of time steps.
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6 Numerical Examples

In this section, a series of numerical examples in FSI is presented to evaluate the performance,
robustness, accuracy, and applicability of the proposed stabilized mixed formulations. These ex-
amples aim to demonstrate the effectiveness of each formulation under various FSI scenarios,
allowing a comprehensive comparison of their capabilities and limitations in capturing the com-
plex dynamics of FSI problems. The first case addresses a classic problem where a fluid flows
through a channel containing a flexible flap. This case reaches a steady-state solution when FSI
forces are balanced. The objective is to analyze the FSI behavior for each of the formulations
presented in this study. The second case examines the well-known Turek’s test [56] to study the
effects of combining different fluid and solid formulations. In this scenario, we investigate the
behavior of a laminar channel flow around an elastic object, where the solution converges to an
oscillatory state. The final case focuses on analyzing blood flow in a carotid artery to compare the
different formulations in a realistic application in the field of computational biomechanics. Using
a patient-specific geometry, this example aims to study atherosclerosis and evaluate each formu-
lation’s effectiveness in accurately capturing complex FSI interactions in a biomedical context.

Concerning the iterative scheme, for all examples a maximum of 10 iterations are set for both
the fluid and the solid sub-problems, whose numerical relative tolerance in the L2 norm is 10−5.
Also, for the transmission conditions on the interface boundary (using again the L2 norm), the
relative tolerance is 10−3. In order to solve the monolithic system of linear equations for each
sub-problem, we use the Biconjugate Gradients solver, BiCGstab [57], which is implemented in
the PETSc parallel solver library [58].

It is important to note that mesh convergence results and corresponding error estimates for
both the fluid and structural domains have been addressed in previous studies. On the structural
side, the uuu formulation discussed in Subsection 3.2 is widely utilized, and its error analysis can be
found in sources such as [9]. In contrast, the mixed uuup formulation, introduced in Subsection 3.3,
is explored in [36]. Finally, the mixed uuupSSS′ formulation, detailed in Subsection 3.4, is presented in
[38]. For the fluid flow problem, the irreducible two-field vp formulation discussed in Subsection
4.3 is commonly applied, with error analysis available, for example, in [59, 60]. Additionally, the
three-field vpσσσ formulation for incompressible fluids, presented in Subsection 4.4, is documented
in [61].

In all numerical examples, s1 will refer to the uuu formulation, s2 to the uuup formulation, and s3
to the uuupSSS′ formulation. For the fluid, f 2 will denote the vp formulation, while f 3 will refer to the
vpσσσ formulation.

In the numerical examples, the material parameters for the solid will be given in terms of
Young’s modulus, Es and Poisson’s ratio, νs, as is commonly done in the literature. These param-
eters are related to the bulk modulus κs and shear modulus µs through the following expressions:

µs =
Es

3(1− 2νs)
and κs =

Es

2(1 + νs)

6.1 Flow through a channel with a flexible flap

In this case, we investigate the interaction between a fluid and a flexible structure within a channel,
a classic setup used to study FSI dynamics. A fluid flows through the channel, interacting with
an elastic flap positioned in the middle, eventually reaching a steady-state solution where the
forces between the fluid and the solid are balanced. The objective of this numerical example is
to evaluate the formulations presented for both the solid and fluid domains and compare their
performance based on the number of DOFs. Finally, the analysis also examines the volumetric
locking that may occur in the solid formulations when considering a nearly incompressible flap.
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6.1.1 Setup

The geometry of the problem is shown in Fig. 2. The rigid channel has a height of H = 1 m, and
the flexible wall is positioned at a distance of 2H from the channel entrance. The total length of the
channel is L = 5 m. The structural bar within the channel has a width of l = 0.1 m and a height of
h = 0.5 m.

Figure 2: Flow through a channel with a flexible flap. Geometry.

Regarding the properties of the fluid, the density is ρf = 1 kg/m3 and the dynamic viscosity
is µf = 1 Pa· s. For the elastic plate, a compressible material is assumed. The properties are as
follows: an initial density ρo

s = 1 kg/m3, a Young’s modulus Es = 400 kPa and a Poisson’s ratio
νs = 0.4. A plane strain assumption is considered.

Concerning the boundary conditions, in the inlet boundary of the fluid domain Γin
f , a steady

Poiseuille flow with average velocity v̄ = 10 m/s is assumed, given by

v̄in
f (0, y) = 1.5 v̄

y(H − y)(H
2

)2 .

On the walls Γwall
f , no-slip boundary conditions are imposed, and on the outlet Γout

f , the pressure
is set to pout

f = 0 Pa. A rectangular plate is considered as the solid domain, and it is clamped at
the bottom side. The considered Reynolds number is Re = ρfv̄H/µf = 10.

We select the time step δt = 0.01 s and to start the problem, a smooth increase of the inlet
velocity profile in time is prescribed, given by

vin
f (0, y, t) =

{
v̄in

f (0, y) 1−cos πt
2 if t < 1.0 s

v̄in
f (0, y) otherwise

.

The domains are discretized by using linear structured elements (P1). Several meshes have
been used for this example, whose properties are summarized in Table 1 for the fluid domain and
in Table 2 for the solid one.

Before analyzing the proposed cases, Fig. 3 shows the distribution of velocities and pressures
in the channel after reaching the steady-state solution for the meshes that have already converged.

6.1.2 Solid domain formulations: a comparative study

The first study aims to analyze the impact of using each solid formulation on the overall FSI
problem. To this end, we will fix a fine mesh (M4f) and use the mixed formulation f3 for the fluid,
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Fluid Mesh Nodes Elements Element Size
Element Size
FSI Boundary

DOFs f 2 DOFs f 3

M1f 232 382 0.2 0.02 696 1,392
M2f 677 1,194 0.1 0.01 2,031 4,062
M3f 2,465 4,622 0.05 0.005 7,395 14,790
M4f 9,340 18,083 0.02 0.002 28,020 56,040
M5f 57,141 112,844 0.01 0.001 171,423 342,846

Table 1: Flow through a channel with a flexible flap: Main characteristics of the fluid computa-
tional meshes.

Solid Mesh Nodes Elements Element Size DOFs s1 DOFs s2 DOFs s3

M1s 33 40 0.05 66 99 198
M2s 105 160 0.025 210 315 630
M3s 561 1,000 0.01 1,122 1,683 3,366
M4s 8,241 16,000 0.0025 16,482 24,723 49,446
M5s 50,601 100,000 0.001 101,202 151,803 303,606

Table 2: Flow through a channel with a flexible flap: Main characteristics of the solid computa-
tional meshes.

(a) Velocity field

(b) Pressure field

Figure 3: Flow through a channel with a flexible flap. Distribution of the velocity field (top) and
pressure (bottom) in the fluid domain for the stationary solution. Velocities are plotted using their
Euclidean norm.
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examining the different cases for all solid meshes, from M1s to M5s, across the three proposed
formulations. Since formulation s1 has 2 DOFs per node, s2 has 3 DOFs per node, and s3 has
6 DOFs per node, the most appropriate comparison between formulations will be based on the
number of DOFs.

10
1

10
2

10
3

10
4

10
5

10
6

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) x-displacement

10
1

10
2

10
3

10
4

10
5

10
6

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) y-displacement

10
1

10
2

10
3

10
4

10
5

10
6

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

(c) Drag

10
1

10
2

10
3

10
4

10
5

10
6

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Lift

Figure 4: Flow through a channel with a flexible flap. Comparative study for the solid formula-
tions with respect to DOFs.

Fig. 4 displays the relative convergence of the different formulations with respect to the final
solution (taken as the one obtained for the s3 formulation with the M5s mesh). In this figure,
we have plotted the displacements of the upper-right corner of the flap, as well as the drag and
lift forces over the entire interaction surface ΓI. As observed in all cases, the formulation that
converges the fastest is s3, followed by s2. It is also important to note that these formulations
achieve higher accuracy in the variables used as unknowns (we refer the reader to [38] for more
details), which is not directly reflected in these graphs. Therefore, we can conclude that using
mixed formulations for the solid domain allows the final FSI solution to converge more quickly,
providing good results even for coarse meshes such as M1s or M2s.

6.1.3 Fluid domain approaches: comparative insights

The second study focuses on evaluating the influence of different fluid formulations on the overall
FSI problem. For this purpose, we fix a fine mesh (M4s) and use the mixed formulation s3 for
the solid, testing various cases with all fluid meshes, from M1f to M5f, across the two proposed
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formulations. Since formulation f2 uses 3 DOFs per node and formulation f3 uses 6 DOFs per
node, the comparison between these formulations will again be based on the number of DOFs to
ensure a consistent and meaningful evaluation.
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Figure 5: Flow through a channel with a flexible flap. Comparative study for the fluid formula-
tions with respect to DOFs.

In this case, as shown in Fig. 5, introducing stresses as a variable in the problem significantly
accelerates the global convergence of the FSI problem compared to the irreducible formulation f2.
Once again, it is demonstrated that the use of the mixed formulation f3 is highly worthwhile for
addressing FSI problems effectively even for very coarse meshes.

6.1.4 The volumetric locking. A nearly incompressible material consideration

For the sake of exhaustiveness, we will now consider that the deformable bar is an elastomer or
a rubber-like material. These materials exhibit the property of maintaining an almost constant
volume during deformation due to their very high bulk modulus compared to their shear modu-
lus. In such cases, Poisson’s ratio approaches 0.5, indicating a nearly incompressible behavior. In
the following simulation, we will consider a material with the same Young’s modulus as before,
Es = 400 kPa, but a Poisson’s ratio close to 0.5, νs = 0.499.

We conducted the same study as outlined in Subsection 6.1.2 to analyze the evolution of the
error with respect to the number of DOFs for each of the formulations presented to solve the solid
dynamics subproblem. In Fig. 6, the displacements at the upper-right corner of the bar, as well
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as the drag and lift along the entire FSI boundary, are shown for the nearly incompressible ma-
terial considered. As observed, the irreducible displacement formulation converges very slowly
and consistently underestimates the actual solution. This phenomenon, referred to as volumet-
ric locking [36], occurs due to the inability of the formulation to converge to the correct solution
as the material approaches the incompressible limit, leading to this type of locking. In contrast,
the two mixed formulations presented in this study do not exhibit such locking, as can be clearly
observed.
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Figure 6: Flow through a channel with a flexible flap. Comparative study for the solid formula-
tions with respect to DOFs for a nearly incompressible material.

It is important to highlight that, as expected, the locking or errors introduced in each subprob-
lem will inevitably affect the coupled problem as a whole. For this reason, it can be observed, as
anticipated, that this effect also propagates when computing the drag and lift forces exerted by
the fluid on the structure.

6.2 Turek’s test

In this case, we analyze the interaction between a hyperelastic structure and a laminar flow. The
Turek benchmark is widely used by researchers as a reference test to validate their implementa-
tions of FSI problems [56]. The configuration consists of a laminar channel flow interacting with
a flexible structure, leading to self-induced oscillations of the solid. We compare two numerical
settings: one using irreducible formulations for both domains f2s1 (s1 for the solid and f2 for the
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fluid) and another employing mixed three-field formulations f3s3 (s3 for the solid and f3 for the
fluid). The comparison focuses on accuracy, convergence behavior, and the ability to address key
numerical challenges. This study aims to demonstrate the potential advantages of mixed formula-
tions in improving the overall FSI problem accuracy while assessing the associated computational
cost.

6.2.1 Setup

Let us start defining the sizes of the geometry, displayed in Fig. 7. The rigid channel measures
H = 0.41 m in height and L = 2.5 m in length. The center of the circular cylinder is located at
C = (0.2, 0.2) m, measured from the bottom-left corner of the channel, with a radius of r = 0.05 m.
The structural bar has a length of l = 0.35 m and a height of h = 0.02 m. Its bottom-right corner is
positioned at (0.6, 0.19) m, while its left end is fully attached to the fixed cylinder.

Figure 7: Turek’s test. Geometry.

Let us define the boundary conditions considered for the fluid flow problem. At the channel
inflow, a parabolic velocity profile is prescribed, given by

v̄in
f (0, y) = 1.5 v̄

y(H − y)(H
2

)2 . (48)

Thus, the mean inflow velocity is v̄, and the maximum inflow velocity is 1.5 v̄. Additionally, a
smooth time-dependent increase in the velocity profile is considered, defined as

vin
f (0, y, t) =

{
v̄in

f (0, y) 1−cos π
2 t

2 , t < 2.0 s,
v̄in

f (0, y), otherwise.
(49)

At the outflow, a stress-free condition is applied. Additionally, a no-slip condition is imposed on
the walls of the channel, as well as on the cylinder and the bar. For the solid problem, fixed zero
displacement is applied at the left edge, while all other edges are free.

Let us now define the parameter settings for the benchmark case considered. Since we aim
to analyze a time-dependent problem, we select the FSI2 test detailed in [56], which exhibits a
periodic solution. Table 3 specifies the relevant parameters for both problems. Note that the fluid
viscosity considered here is the dynamic one.

Finally, with respect to the domain discretization, the fluid domain is discretized using P1
(linear) elements, while the solid domain is discretized with Q1 (bilinear) elements. The mesh
is finer around the cylinder and the bar, and becomes coarser downstream, as shown in Fig. 8.
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Parameter (solid) Value Parameter (fluid) Value

ρo
s [kg/m3] 104 ρf [kg/m3] 103

Es [MPa] 1.4 µf [Pa · s] 1
νs [-] 0.4 v̄ [m/s] 1

Re [-] 100

Table 3: Turek’s test. Parameter settings for Turek’s test FSI2.

Table 4 details the three meshes employed and the corresponding DOFs for each formulation
considered.

(a) Mesh of the fluid domain

(b) Zoom around the cylinder and bar and mesh of the solid do-
main

Figure 8: Turek’s test. FE mesh.

6.2.2 Comparison with the Turek benchmark

This section aims to compare our results with those from the benchmark in [56], using a neo-
Hookean material instead of the Saint Venant-Kirchhoff solid employed in the original bench-
mark. The specific case considered, as introduced in the previous section, corresponds to the FSI2
configuration in the reference. The benchmark assumes a Reynolds number of 100 for the fluid
flow and a slight displacement of the cylinder from the symmetry axis. These two characteristics
lead to a periodic, time-dependent response of the fluid flow, inducing the motion of the beam.

Fig. 9 presents six snapshots corresponding to three different time instants within one of the
periodic cycles of the solution. The images on the left-hand side show the velocity field over the
fluid domain. The results clearly demonstrate the development of vortical structures. The images
on the right-hand side display the same snapshots, but with colors representing the pressure field.
Note that a pressure peak is observed on the left side of the cylinder, due to the fluid flowing in
the rightward direction. Additionally, the beam exhibits periodic motion, oscillating above and
below its equilibrium position.

A more quantitative comparison between the results obtained in this study and those reported
in the referenced benchmark can be made by analyzing the plots shown in Fig. 10. In these plots,
we examine four variables: the horizontal and vertical displacement of point A, located at the
right end of the beam, as well as the drag and lift forces computed over both the cylinder and the
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Fluid Mesh Nodes Elements
Element Size
FSI Boundary

DOFs f 2 DOFs f 3

M1f 1,916 3,528 0.01 5,748 11,496
M2f 3,105 5,805 0.005 9,315 18,630
M3f 12,631 24,622 0.001 37,893 75,786

Solid Mesh Nodes Elements Element Size DOFs s1 DOFs s3

M1s 355 280 0.005 710 2,130
M2s 707 600 0.0035 1,414 4,242
M3s 7,392 7,020 0.001 14,784 44,352

Total Mesh Nodes Elements DOFs f 2s1 DOFs f 3s3

M1 2,271 3,808 6,458 13,626
M2 3,812 6,405 10,729 22,872
M3 20,023 31,642 52,677 120,138

Table 4: Turek’s test. Fluid, solid and total computational meshes.

beam.
Some minor differences have been observed between our solution and the one from the Turek

benchmark. For instance, the frequency of oscillations is slightly higher in the reference case.
Additionally, the maximum peaks in the drag force are higher in the benchmark (around 280 N),
while in our study, the peak value is approximately 275 N. Despite these slight discrepancies, we
consider them to be due to the different constitutive model for the solid [15].

6.2.3 Comparison between formulations

As introduced earlier, we now seek to compare different formulations and mesh refinements. The
two combinations of solid and fluid formulations considered in this study are as follows: the
first involves irreducible formulations for both domains, denoted as f2s1, and the second employs
mixed three-field formulations, denoted as f3s3. Details about the meshes are provided in Table 4.

We will analyze the accuracy of these two configurations by varying the mesh, considering
three different refinements, which are also detailed in Table 4. In Fig. 10, the following color
scheme is used: green for the finer mesh (M3), orange for the medium mesh (M2), and blue for
the coarser mesh (M1). Lighter colors represent the irreducible formulations (f1s1), while darker
colors correspond to the mixed formulations (f3s3). It is expected that mesh refinements will yield
more accurate results.

Let us first focus on the coarser mesh (blue lines). We observe a considerable improvement
when the mixed formulation (lighter line) is used to model the solid and fluid domains, as com-
pared to the irreducible formulation. However, this is not a novel result. By increasing the number
of DOFs, while using the same mesh, the mixed formulation will naturally yield more accurate
results.

Now, let us compare two mesh refinements, M1 and M2 (blue and orange), along with the
combinations of formulations f3s3 and f2s1. While there is no noticeable difference between the
drag and lift variables reported as M1 f3s3 and M2 f2s1, the results for the vertical and horizontal
displacements of point A (located at the right end of the beam) are particularly noteworthy, as they
are significantly close. This suggests that by using fewer DOFs, but with mixed formulations, we
achieve a highly accurate result. This observation becomes even more apparent when we compare
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(a) t = 30.0 s

(b) t = 32.0 s

(c) t = 33.0 s

Figure 9: Turek’s test. Plot of the velocity norm and pressure for test FSI2 at different time instants.

the case M2 f3s3 (light orange) with the case M3 f2s1 (dark green). It is evident that the behavior of
all four measured variables is nearly identical when comparing these cases. This effect (obtaining
similar accuracy with fewer DOFs) should be emphasized.

The conclusion of this study is particularly significant. It demonstrates that mixed formula-
tions provide more accurate results, even when using coarse meshes, and with a reduced number
of DOFs. This finding highlights the potential of mixed formulations applied to FSI problems to
achieve accurate solutions while minimizing computational costs, which could have a high impact
on the efficiency of simulations in similar contexts.
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(d) Drag force volution computed around cylinder and beam.

Figure 10: Turek’s test. Displacement at point A and drag and lift forces over the interface bound-
ary ΓI.
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6.3 Carotide blood flow

The final example presented in this work is the numerical study of blood flow in a three-dimensional
carotid artery using an FSI approach. The aim is to evaluate the efficiency of mixed formulations
in a relevant and applied biomechanics case.

First of all, it is important to highlight that the study of blood flow plays a crucial role in
understanding the mechanisms behind the onset and progression of atherosclerosis, a precursor
pathology to cardiovascular diseases such as stroke and heart attacks [62]. As introduced in [63],
computational fluid dynamics techniques have been extensively used to study the hemodynamics
of the carotid artery bifurcation [64, 65, 66]. However, this approach has a significant limitation,
as the artery’s deformation directly influences the blood flow behavior. Since arterial walls are
deformable, neglecting their interaction with blood flow can lead to inaccurate hemodynamic
predictions, particularly in diseased arteries. With the advancement of computational power in
the last decade, FSI has been increasingly applied to the study of blood flow in both healthy and
stenosed vessels [67, 68]. Despite significant progress, the effect of atherosclerosis on arterial wall
mechanics is often overlooked due to the challenges in experimentally measuring vessel elasticity
changes caused by the disease.

For this example, we consider the case studied by Lopes et al. [63], where the carotid artery
blood flow is analyzed to compare models with rigid and elastic walls, incorporating certain sim-
plifications (we consider an stationary fluid flow, for example). This study has a dual objective:
first, to test mixed formulations in three-dimensional problems, and second, to demonstrate that
they are more computationally efficient and robust in terms of convergence compared to irre-
ducible formulations.

6.3.1 Setup

Let us now define the geometry of the problem. In Fig. 11, we can observe the main characteristics
of the chosen geometry. It is important to note that the CAD model used was downloaded from the
GrabCAD Library [69], where similar computational studies have been conducted. From this CAD
model, we have also generated the membrane around the carotid artery. No further simplifications
have been considered.

First, let us describe the geometric measurements detailed in Fig. 11b. Upstream of the bi-
furcation is placed the Common Carotid Artery (CCA), which represents the inlet. Downstream
of the bifurcation are located the Internal Carotid Artery (ICA) and the External Carotid Artery
(ECA), which represent the outlets. The dilation that exists in the ICA is called the carotid sinus,
or carotid bulb, and the zone of separation between the two outlet arteries is referred to as the
carotid apex. The inlet and outlet diameters considered are: dICA = 4.322 mm, dECA = 3.024 mm,
and dCCA = 6.272 mm.

Regarding the total length of the carotid domain, it is given by LT = 60 mm, while the length
measured from the bifurcation is LB = 20 mm. Note that in this case, we are working with a
small-scale geometry. The membrane thickness considered is dm = 0.2 mm. Lastly, the yellow and
red lines drawn over Fig. 11b indicate the paths where some results will be presented in the next
section.

Once the geometry has been described, we need to define the material properties for both the
solid and the fluid. These properties are the same as those used in [63], where the fluid considered
(representing blood) is Newtonian, with a density of ρf = 1, 060 kg/m3 and a dynamic viscosity
of µf = 3.5 mPa · s. For the hyperelastic solid material, we assume an initial density of ρo

s =
1, 120 kg/m3, a Poisson’s ratio of νs = 0.45, and a Young’s modulus of Es = 1.106 MPa.

Now, let us explain the boundary conditions considered, which are represented in Fig. 11a.
Regarding the boundary conditions for the fluid domain, a no-slip boundary condition is imposed
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(a) Fluid and solid domains (b) Full domain

Figure 11: Carotide blood flow. Geometry of the carotid artery bifurcation.

on the walls Γwall, and a fully developed flow is assumed at the artery inlet (denoted by Γin in the
scheme). Considering the x and y axes contained in the inlet and z normal to them, the velocity
prescribed is vf = [vx, vy, vz]T, with

vx(x, y, 0) = 0, vy(x, y, 0) = 0, vz(x, y, 0) = vmax

(
1− (x2 + y2)

r2
CCA

)
Note that vz is the main direction of the flow in the artery, the maximum velocity at the inlet is
vmax = 0.02 m/s, and rCCA is the radius of the CCA inlet. In contrast to other studies, such as the
one conducted by Lopes et al. [63], we assume a constant inlet fluid flow. On the other hand, the
outlets are denoted by Γout, corresponding to the outlet surfaces of the ICA and ECA arteries.

In both domains, ΓI represents the interface domain. In the case of the fluid domain, it coin-
cides with Γwall, which defines the surfaces that exchange information with the solid domain.

Regarding the solid model, the boundaries adjacent to the inlet and outlet are fixed. On the re-
maining boundaries of the solid, a stress-free condition is considered, allowing the solid to deform
freely in any direction.

Lastly, regarding the discretization employed, we have used in this study two different meshes,
which are detailed in Table 5. Here, M1 refers to the coarse mesh, while M2 corresponds to the
finer one.

In this study, we analyze three different cases to evaluate the impact of numerical formula-
tions on the accuracy of computations. The first two cases use the same mesh configuration, with
M1f for the fluid and M1s for the solid, but employ different formulations: M1 f2s1 follows an
irreducible approach (f2 for the fluid and s1 for the solid), while M1 f3s3 implements a three-field
mixed formulation (f3 for the fluid and s3 for the solid). To further assess the advantages of the
proposed mixed formulations, a third case is introduced, M2 f2s1, using a refined mesh (M2f for
the fluid and M2s for the solid) while maintaining the irreducible formulation for both subprob-
lems. The characteristics of both the meshes and formulations used in each case are detailed in
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Fluid Mesh Nodes Elements DOFs f 2 DOFs f 3

M1f 32,026 163,518 128,104 320,260
M2f 80,065 401,792 320,260 800,650

Solid Mesh Nodes Elements DOFs s1 DOFs s3

M1s 15,885 47,421 47,655 158,850
M2s 51,408 155,453 154,224 514,080

Total Mesh Nodes Elements DOFs f 2s1 DOFs f 3s3

M1 47,911 210,939 175,759 479,110
M2 131,473 557,245 474,484 1,314,730

Table 5: Carotide blood flow. Fluid, solid and total computational meshes.

Table 5.

6.3.2 Hemodynamic parameters

Let us now define the Wall Shear Stress (WSS), a relevant force to consider in this type of study. The
WSS is the frictional force per unit area exerted by the flowing blood on the innermost layer of the
arterial wall, known as the intima. This layer is lined by the endothelium, a thin layer of specialized
cells that acts as a barrier between the blood and the vessel wall, regulating vascular function and
blood flow. In cardiovascular biomechanics, the WSS plays a fundamental role, as the pulsatile
nature of blood flow generates shear forces on the endothelium, influencing the cellular function
and the pathogenesis of diseases such as atherosclerosis. Some hemodynamic studies indicate
that regions exposed to chronically low WSS are prone to atherosclerotic plaque formation due
to endothelial dysfunction, increased permeability, and local inflammatory responses. Otherwise,
excessively high WSS values have also been associated with plaque vulnerability [70, 71].

In this study we have computed this force as τωτωτω = 2µf∇symvf · nf in the case of the two-
field fluid formulation and as τωτωτω = σσσf · nf in the three-field formulation one. It is important to
highlight that, in the two-field formulation, the WSS is computed using the velocity gradients,
whereas in the three-field formulation it is directly obtained from the deviatoric part of the stress
tensor, which is a nodal variable of the problem. Therefore, an increase in the accuracy of the WSS
computation is expected in the latter case (not in the rate of convergence).

6.3.3 Results and comparison

We present the numerical results. First, we show the velocity and pressure distributions in a
cross-sectional view of the simulated arterial bifurcation in Fig. 12. Although three different con-
figurations were analyzed, only one is displayed here, as the results for all cases exhibit highly
similar profiles. This similarity arises from the fact that, in our formulations, both velocity and
pressure are treated as unknowns in the fluid problem.

On the one hand, the velocity profile exhibits the expected characteristics of a flow within a
bifurcating artery. Higher velocity magnitudes are concentrated in the central region of the vessel,
while near the arterial walls, the velocity decreases. A significant reduction in velocity is observed
within the widened section of the internal carotid artery, likely due to flow deceleration and local
recirculation. On the other hand, the pressure distribution highlights a smooth pressure gradi-
ent along the main arterial segment, with higher values upstream and a noticeable drop near the
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(a) Velocity (b) Pressure

Figure 12: Carotide blood flow. Fluid flow distribution in a cross-sectional view.

bifurcation. The pressure reaches a maximum of approximately 40 Pa, with a pronounced reduc-
tion occurring at the carotid sinus, a region known for flow disturbances and altered WSS. This
drop in pressure is indicative of energy dissipation and potential flow separation in this region.
Furthermore, minor pressure variations between the internal and external carotid arteries suggest
differences in resistance and downstream conditions. These results align with the expected hemo-
dynamic behavior of arterial bifurcations, where complex flow interactions significantly influence
local shear forces and vascular remodeling [72].

Next, we analyze the WSS values at both the sinus and the apex of the carotid artery, as pre-
viously introduced. These regions are clearly indicated in the schematic representation in Fig. 11.
We first examine the behavior of the WSS in the carotid sinus.

Fig. 13 illustrates the WSS distribution over the carotid sinus for the three analyzed configu-
rations. The color scale is limited to the range of 0− 0.4 Pa, highlighting regions where WSS is
particularly low. According to the literature, areas with low WSS (< 0.4 Pa) are strongly associ-
ated with endothelial dysfunction and an increased risk of atherosclerosis [73, 74]. These regions
favor the adhesion of low-density lipoproteins, leukocyte infiltration, and plaque formation, mak-
ing them critical in the study of vascular pathologies. In all three cases, the lowest WSS values
(blue regions) are concentrated in the carotid sinus, which aligns with well-documented findings
that this area is particularly susceptible to flow recirculation and stagnation. These effects con-
tribute to the development of atheroprone regions, as the disturbed flow dynamics fail to sustain
the protective shear forces necessary for endothelial homeostasis.

Moreover, Fig. 14 presents a comparison of the WSS distribution along a selected path extend-
ing from the CCA, passing through the carotid sinus, and reaching the ICA for the three studied
configurations (see yellow line in Fig. 11b). This analysis aims to assess the impact of different
formulations on the accuracy of WSS computation, particularly in detecting critical shear stress
variations along the arterial wall.

The overall trends in the WSS distribution are consistent across all three cases, reinforcing the
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(a) M1 f2s1 (b) M1 f3s3 (c) M2 f2s1

Figure 13: Carotide blood flow. WSS distribution on the carotid surface sinus for the three config-
urations.
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Figure 14: Carotide blood flow. WSS comparison on the carotid surface sinus.

robustness of the numerical approach. However, notable differences arise in the regions where
the WSS exhibits quick variations, specifically at the carotid sinus and ICA entrance.

As the flow reaches the carotid sinus, a sharp drop in WSS is observed, approaching near-zero
values. This behavior is expected due to flow recirculation and stagnation in this region, which
is well-documented as a key factor in the development of atherosclerosis. All three formulations
accurately capture this low-WSS region, confirming that the numerical models effectively predict
the primary hemodynamic features of the carotid bifurcation.

Beyond the sinus, the differences between cases become more pronounced, particularly in re-
gions where the WSS experiences rapid increases due to flow reattachment and acceleration. The
first major WSS peak occurs just after the carotid sinus, where the flow reattaches to the arte-
rial wall. In this region, M1 f3s3 captures the peak with greater sharpness, agreeing with previous
studies on three-field mixed formulations, which suggest that the introduction of stress as an inde-
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pendent variable enhances the resolution of stress gradients. In contrast, M1 f2s1 underestimates
this peak, likely due to a lower number of DOFs, while M2 f2s1 shows slightly smoother transi-
tions, indicative of numerical diffusion despite having as similar number of DOFs as M1 f3s3.

The most significant WSS peak is observed at the ICA entrance, where WSS increases steeply
due to flow acceleration. M1 f3s3 resolves this peak with the highest accuracy, while M1 f2s1 and
M2 f2s1 exhibit smoother transitions, suggesting an underestimation of the localized shear forces.
This is a critical finding, as high WSS gradients are associated with endothelial mechanotransduc-
tion responses, arterial remodeling, and plaque stability [64, 75]. The ability to precisely capture
these WSS peaks is crucial for biomechanical modeling, as it directly influences the assessment of
regions prone to pathological vascular changes.

Next, we analyze the WSS values in the apex of the carotid artery. Fig. 15 presents the WSS
distribution on the carotid surface for the three analyzed configurations, highlighting the regions
subjected to the highest shear forces. Although the absolute WSS values in this study remain rel-
atively low, this is primarily due to the imposed steady inflow boundary conditions, as pulsatile
flow was not considered. Despite this limitation, the results effectively capture the spatial distri-
bution of high WSS regions, which are particularly relevant in the context of arterial remodeling
and the potential destabilization of atherosclerotic plaques.

(a) M1 f2s1 (b) M1 f3s3 (c) M2 f2s1

Figure 15: Carotide blood flow. WSS distribution on the carotid surface for the three configura-
tions.

The highest WSS values are predominantly observed at the bifurcation apex and along the
inner walls of the ICA and the ECA. These regions correspond to areas of significant flow redirec-
tion, where velocity gradients become more pronounced due to the geometric constraints imposed
by the bifurcation. The presence of high WSS in these areas is consistent with previous hemody-
namic studies, which indicate that localized shear stress peaks can induce endothelial activation
and arterial wall remodeling. While moderate WSS values contribute to vascular homeostasis,
excessively high WSS levels have been associated with endothelial damage, increased oxidative
stress, and plaque destabilization, potentially leading to thrombotic events [73].

As done for the sinus region, Fig. 16 presents the WSS distribution along a selected path that
starts in the ICA, descends through the bifurcation, and then ascends into the ECA (see red line
in Fig. 11b). This region is of particular interest due to the high WSS values observed at the
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bifurcation, which play a crucial role in vascular remodeling and endothelial response. The aim
of this comparison is to evaluate how different numerical formulations influence the resolution of
these high-shear stress regions, which are known to be associated with endothelial activation and
potential plaque vulnerability.
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Figure 16: Carotide blood flow. WSS comparison on the carotid surface apex

As observed in the analogous study conducted for the sinus region, the WSS distribution in
this area is similar across the three cases. However, significant differences should be highlighted
in the localization and sharpness of the WSS peaks.

From the ICA region, the WSS progressively increases before reaching the bifurcation. At
this point, all three cases exhibit similar WSS magnitudes, with M1 f3s3 and M2 f2s1 showing
slightly higher values compared to M1 f2s1. These differences suggest that the mixed formulation
(M1 f3s3) captures the stress distribution with greater accuracy, whereas the irreducible formula-
tion in M1 f2s1 may underestimate the shear forces due to its lower number of DOFs.

At the bifurcation apex, WSS reaches its highest values. M1 f3s3 resolves the peak more
sharply, while both irreducible formulations exhibit a smoother transition. This again confirms
findings from previous studies, where treating the stress as an independent variable enhances the
accuracy of high-shear stress calculations. The ability to resolve these peaks is crucial, as abrupt
changes in WSS have been linked to mechanotransduction responses (the process by which cells
convert mechanical stimuli into biochemical signals) in endothelial cells, influencing both vascular
adaptation and plaque stability.

Following the bifurcation, as the path moves toward the ECA, WSS decreases progressively.
However, another sharp peak appears in the post-bifurcation region, where flow reattachment
occurs. M1 f3s3 once again resolves this peak more accurately, while M1 f2s1 and M2 f2s1 show
smoother transitions. This suggests that, despite M2 f2s1 having the same number of DOFs as
M1 f3s3, its irreducible formulation introduces a higher level of numerical diffusion, leading to a
less precise capture of sharp WSS variations.

This analysis highlights the advantages of using a mixed three-field formulation for the accu-
rate computation of WSS, particularly in detecting sharp peaks. Since high WSS gradients influ-
ence vascular remodeling and disease progression, the ability to resolve them with higher fidelity
is essential for biomechanical modeling. The results validate the use of mixed formulations (f3s3)
as a superior alternative to standard irreducible methods (f2s1), offering improved numerical ac-
curacy while maintaining computational efficiency.
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7 Conclusions

This study investigates the impact of mixed formulations on FSI problems, focusing on their abil-
ity to improve the accuracy and robustness of numerical simulations. By comparing irreducible
and mixed formulations in both the fluid and solid domains, we demonstrate the advantages of
introducing stress as an additional unknown to enhance the precision of stress-related quantities
in different FSI scenarios. From the numerical examples several key conclusions can be drawn
regarding the numerical stability, convergence and accuracy of the mixed formulation compared
to the irreducible approach.

First, the results demonstrate that the three-field mixed formulations improve the convergence
behavior of the coupled FSI system. In contrast, the irreducible formulations exhibit larger pres-
sure oscillations and require finer mesh resolutions to achieve similar accuracy. This highlights the
better numerical stability of mixed formulations, particularly when dealing with incompressible
or nearly incompressible materials in the solid domain.

Second, mixed formulations are shown to be less sensitive to mesh refinement, achieving ac-
curate results even with a coarser mesh. This suggests that introducing stress as an independent
unknown enhances the representation of stress fields without significantly increasing computa-
tional cost.

Finally, the results confirm that mixed formulations correctly capture the structural deforma-
tion and its interaction with the surrounding fluid, producing smoother and more physically
consistent stress distributions. This is particularly relevant for problems where accurate stress
transmission at the fluid-solid interface is essential, such as in simulations of flexible structures
undergoing large deformations.

These advantages become particularly important in applications requiring high-fidelity stress
computations, such as hemodynamic simulations in arterial flows. In these cases, the ability to
precisely capture stress variations, especially WSS gradients, plays a crucial role in understand-
ing vascular remodeling, atherosclerosis progression, and plaque stability. The numerical results
from our hemodynamic case study confirm that the mixed formulations enhance the resolution of
sharp WSS variations, particularly in high-shear regions such as bifurcations and flow reattach-
ment zones, where traditional irreducible methods tend to smooth out peak values, leading to an
underestimation of critical stress gradients. The ability of mixed formulations to accurately re-
solve these stress gradients has direct implications for both biomechanical modeling and clinical
applications. These findings highlight the potential of mixed formulations for high-accuracy FSI
simulations, paving the way for further research in patient-specific vascular modeling.
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